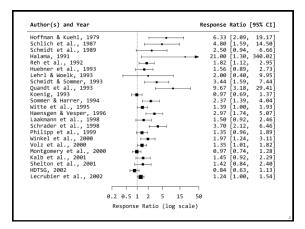
Alternative weighting schemes in the random-effects model to reduce the impact of publication bias

Wolfgang Viechtbauer Maastricht University The Netherlands http://www.wvbauer.com

Standard RE Model

- $y_i = \mu + u_i + \epsilon_i$
 - $u_i \sim N(0, \tau^2)$
 - $\epsilon_i \sim N(0, v_i)$
- model fitting:
 - estimate τ^2 (DL, ML, REML, EB/PM, ...)
 - $w_i=1/(v_i+\hat{\tau}^2)$


•
$$\hat{\mu} = \frac{\sum w_i y_i}{\sum w_i}$$
 with $SE[\hat{\mu}] = \sqrt{\frac{1}{\sum w_i}}$

• 95% CI for $\mu: \hat{\mu} \pm 1.96 SE[\hat{\mu}]$

Example: St. John's Wort for Depression

- based on Linde et al. (2005)
- 23* placebo-controlled trials that examined the clinical effects of *Hypericum* extract in adults with depression
- outcome measure: response ratio (RR)
- analysis with log-transformed RRs

* one study with no events excluded

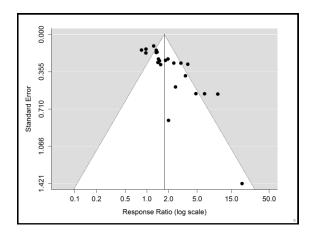
Example: St. John's Wort for Depression

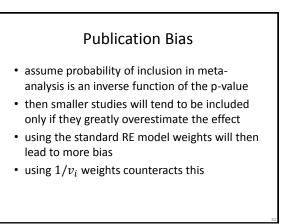
- standard RE model results:
 - $\hat{\tau}_{DL}^2 = 0.14 (I^2 = 73.9\%)$
 - Q(22) = 84.42, p < .0001
 - $\hat{\mu} = 0.56 (SE = 0.10)$
 - back-transformed: 1.75 (95% CI: 1.43 to 2.12)
 - 95% CR/PI: 0.81 to 3.74

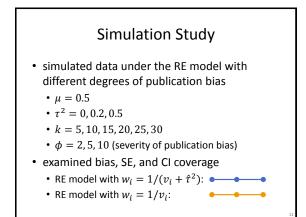
Critique of the RE Model

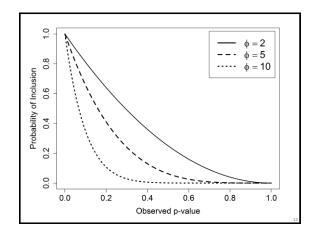
- as $\tau^2 \rightarrow \infty$, $\hat{\mu}$ approaches $\sum y_i/k$
- "so small studies are getting too much weight"
- under the RE model, $\hat{\mu}$ is the UMVUE of μ , so from that perspective, weights are 'correct'
- (actually, since τ^2 is estimated, $\hat{\mu}$ is only an approximation to the UMVUE)

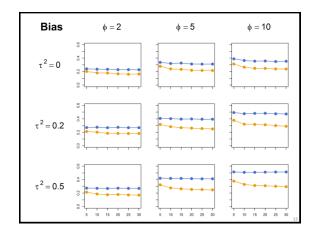
RE Model with Arbitrary Weights

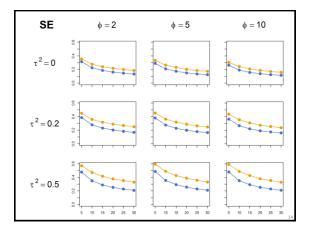

- but we can still fit a RE model using weights that deemphasize smaller studies
- $y_i \sim N(\mu, v_i + \tau^2)$
- then for any arbitrary fixed weights w_i :
 - $\hat{\mu} = \frac{\sum w_i y_i}{\sum w_i}$ is still an unbiased estimate of μ

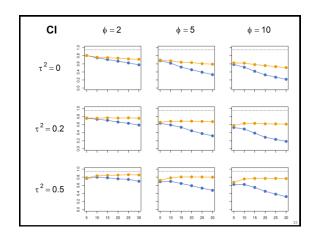

•
$$SE[\hat{\mu}] = \sqrt{\frac{\sum w_i^2(v_i + \tau^2)}{(\sum w_i)^2}}$$

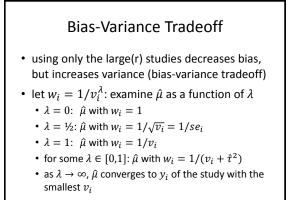

- a sensible choice for the weights: $w_i = 1/v_i$
- some loss of efficiency, but often not much

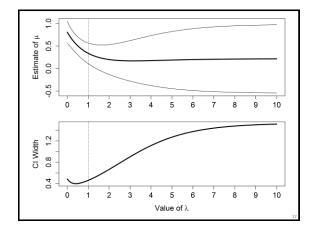

Example: St. John's Wort for Depression

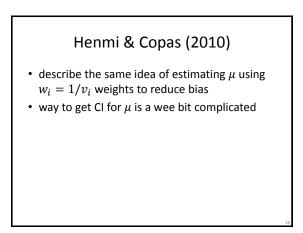

- standard RE model results:
 - $\hat{\tau}_{DL}^2 = 0.14 (I^2 = 73.9\%)$
 - $\hat{\mu} = 0.56 \ (SE = 0.10)$
 - back-transformed: 1.75 (95% CI: 1.43 to 2.12)
- RE model with $w_i = 1/v_i$ weights:
 - $\hat{\tau}_{DL}^2 = 0.14 (I^2 = 73.9\%)$
 - $\hat{\mu} = 0.34$ (SE = 0.12)
 - back-transformed: 1.40 (95% CI: 1.12 to 1.77)







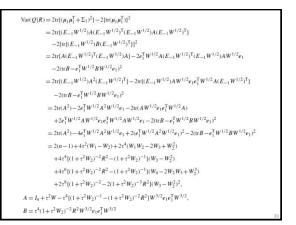




Henmi & Copas (2010)

The conditional distribution of Q given R [...] is a little complicated, but it is well approximated by the gamma distribution with mean

 $(n-1) + \tau^2 (W_1 - W_2) + \tau^4 \{ (1 + \tau^2 W_2)^{-2} R^2 - (1 + \tau^2 W_2)^{-1} \} (W_3 - W_2^2)$


and variance

```
2(n-1) + 4\tau^2(W_1 - W_2) + 2\tau^4(W_1W_2 - 2W_3 + W_2^2)
```

```
+4\tau^4\{(1+\tau^2W_2)^{-2}R^2-(1+\tau^2W_2)^{-1}\}(W_3-W_2^2)
```

```
+4\tau^6\{(1+\tau^2W_2)^{-2}R^2-(1+\tau^2W_2)^{-1}\}(W_4-2W_2W_3+W_2^3)
```

```
+2\tau^8\{(1+\tau^2W_2)^{-2}-2(1+\tau^2W_2)^{-3}R^2\}(W_3-W_2^2)^2.
```


Henmi & Copas (2010)

• comparison:

Method	ĥ	$\exp(\hat{\mu})$	95% CI
RE with $w_i = 1/(v_i + \hat{\tau}^2)$	0.56	1.75	1.43 to 2.12
RE with $w_i = 1/v_i$	0.34	1.40	1.12 to 1.77
Henmi & Copas (2010)	0.34	1.40	1.09 to 1.80

Estimation of τ^2

- τ^2 estimator also implies certain weights:
 - HE: $w_i = 1$
 - DL: $w_i = 1/v_i$
 - ML, REML, EB/PM: $w_i = 1/(v_i + \hat{\tau}^2)$
- general method-of-moments estimator (DerSimonian & Kacker, 2007):
 - HE and DL are special cases
 - can work with any weights

Conclusions

- fitting RE model with $w_i = 1/v_i$ (or other weights) is no problem
- can be used to avoid giving "undue" weight to small studies
- decreases bias if there is publication bias

References

- DerSimonian, R., & Kacker, R. (2007). Random-effects model for meta-analysis of clinical trials: An update. *Contemporary Clinical Trials, 28(2), 105-114.*
- Henmi, M., & Copas, J. B. (2010). Confidence intervals for random effects meta-analysis and robustness to publication bias. *Statistics in Medicine*, 29(29), 2969-2983.
- Linde, K., Berner, M., Egger, M., & Mulrow, C. (2005). St John's wort for depression: Meta-analysis of randomised controlled trials. *British Journal of Psychiatry*, 186, 99-107.