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Studies combined in a meta‐analysis often have differences in their design and

conduct that can lead to heterogeneous results. A random‐effects model

accounts for these differences in the underlying study effects, which includes

a heterogeneity variance parameter. The DerSimonian‐Laird method is often

used to estimate the heterogeneity variance, but simulation studies have found

the method can be biased and other methods are available. This paper com-

pares the properties of nine different heterogeneity variance estimators using

simulated meta‐analysis data. Simulated scenarios include studies of equal size

and of moderate and large differences in size. Results confirm that the

DerSimonian‐Laird estimator is negatively biased in scenarios with small

studies and in scenarios with a rare binary outcome. Results also show the

Paule‐Mandel method has considerable positive bias in meta‐analyses with

large differences in study size. We recommend the method of restricted maxi-

mum likelihood (REML) to estimate the heterogeneity variance over other

methods. However, considering that meta‐analyses of health studies typically

contain few studies, the heterogeneity variance estimate should not be used

as a reliable gauge for the extent of heterogeneity in a meta‐analysis. The

estimated summary effect of the meta‐analysis and its confidence interval

derived from the Hartung‐Knapp‐Sidik‐Jonkman method are more robust to

changes in the heterogeneity variance estimate and show minimal deviation

from the nominal coverage of 95% under most of our simulated scenarios.

KEYWORDS

DerSimonian‐Laird, heterogeneity, random‐effects, REML, simulation
1 | INTRODUCTION

Meta‐analysis is the statistical technique of combining
the results of multiple comparable studies. These studies
often have differences in their design and conduct that
lead to heterogeneity in their underlying effects. When
heterogeneity is thought to be present, researchers should
wileyonlinelibrary.com/jou
first attempt to find its causes, but these causes may be
too numerous to isolate or may simply be unknown.
Unexplained heterogeneity of study effects can be quanti-
fied in a random‐effects model. This model typically
assumes a normal distribution of the underlying effects
across studies. A reliable estimate of the variance of this
distribution can provide valuable insight into the degree
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of heterogeneity between studies, even if such studies are
not formally synthesised in a meta‐analysis.

The moment‐based method proposed by DerSimonian
and Laird1 is most commonly used to estimate the hetero-
geneity variance. However, this method has been shown
in previous simulation studies to be negatively biased in
meta‐analyses containing small studies,2 particularly in
meta‐analyses of binary outcomes.3,4 There are many
other available methods,5 including those proposed by
Paule and Mandel,6 Hartung and Makambi,7 Sidik and
Jonkman,4,8 and the restricted maximum likelihood
(REML) method.9 Estimates derived from these methods
in the same meta‐analysis can often be notably different,
and in a small number of cases, these estimates can pro-
duce discordant conclusions on the summary effect and
its confidence interval.10 Therefore, the choice of hetero-
geneity variance method is an important consideration
in a meta‐analysis. Research based on simulated meta‐
analysis data can allow a researcher to make a more
informed decision.

A recent systematic review collated simulation studies
that compare the properties of heterogeneity variance
estimators.11 Its aim was to assess if there is consensus
on which heterogeneity variance methods (if any) have
better properties than DerSimonian‐Laird (DL). The
review identified 12 relevant simulation studies, but there
was little consensus across the various authors' recom-
mendations.2-4,8,12-19 This may have been caused by a
potential conflict of interest among the authors of all
but four of these studies3,12,13,17; the authors of these
eight studies recommended their own newly proposed
methods over existing methods. Three of the simulation
studies3,12,13 compared only preexisting methods and
made an explicit recommendation for estimating the het-
erogeneity variance; the authors of these studies recom-
mended the method of Paule and Mandel6 and/or
REML,9 but only compared a subset of methods.

The tentative conclusions of that review provided
motivation for a new simulation study, which we present
in this paper. The limitations of previous simulation stud-
ies helped inform the design of this study. We consider
the inclusion of all methods identified in recent reviews
of heterogeneity variance methods,5,11 compare methods
comprehensively in a range of simulated scenarios repre-
sentative of meta‐analyses of health studies, and report a
wide range of performance measures. Performance mea-
sures include those that relate directly to the heterogeneity
variance estimates and those that measure the impact of
heterogeneity variance estimates on the summary effect
estimate and its confidence interval. Our recommenda-
tions are based on a subjective trade‐off between many
performance measures. To minimise any conflict of
interest, we do not propose any newmethods in this paper.
The aims of this simulation study are to (1) compare
the relative performance of heterogeneity variance
methods to establish which method(s) have the most
reasonable properties and (2) find scenarios where the
performance of all methods is poor, such that we cannot
rely on a single method to provide an estimate. In scenar-
ios where all methods perform poorly, we make wider
recommendations for random‐effects meta‐analysis and
dealing with between‐study heterogeneity.

The outline of the paper is as follows. In Section 2, we
introduce methods for estimating the heterogeneity
variance and any other meta‐analysis methods relevant
to this simulation study. The design of the simulation
study is given in Section 3, followed by the results of this
study in Section 4. Results are discussed and conclusions
are drawn in Sections 5 and 6, respectively.
2 | METHODS

2.1 | The heterogeneity variance
parameter in a random‐effects model

A random‐effects model accounts for the possibility
that underlying effects differ between studies in a meta‐
analysis. The random‐effects model is defined as

bθi ¼ θi þ εi θi ¼ θþ δi; (1)

where θi is the true effect size in study i, bθi is the
estimated effect size, and θ is the average effect across
all studies. εi and δi are the within‐study errors and the
between‐study heterogeneity, respectively. Meta‐analysis
methods typically assume that both are normally distrib-
uted, ie, εieN 0; σ2i

� �
and δi~N(0, τ

2). The heterogeneity
variance parameter is a measure of the variance of θi
around θ and is denoted by τ2.

The inverse‐variance method is most commonly used
to estimate θ in this model; the estimate is given by

bθ ¼ ∑k
i¼1wi

bθi=∑k
i¼1wi; (2)

where k is the number of studies in the meta‐analysis and
wi is the weight given to study i.

Under the random‐effects model, using weights
wi ¼ 1= σ2i þ τ2

� �
provides the uniformly minimum vari-

ance unbiased estimator (UMVUE) of θ, which we denote
by bθRE. When τ2 = 0, model (1) simplifies to what is com-
monly referred to as the fixed‐effect model, where the true
effects are homogeneous. In that case, the UMVUE of θ
(which is now the common true effect for all k studies) is
obtained with (2), but using weightswi ¼ 1=σ2i . We denote
this estimator bybθFE. However, the variance parameters σ2i
and τ2 are unknown in practice and must be estimated
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from the data. Methods to estimate τ2 are outlined in the
next section.
2.2 | Heterogeneity variance estimators

Nine estimators were identified from two systematic
reviews of heterogeneity variance methods.5,11 Estimators
proposed by Hunter and Schmidt,20 Rukhin,14 Malzahn
et al,2 and the maximum likelihood method proposed by
Hardy and Thompson21 are present in these reviews but
excluded from themain results because preliminary analy-
sis showed they are clearly inferior to other methods
(as shown in Appendix S1). Furthermore, Bayesian
methods that rely on a subjective choice of prior distribu-
tion are excluded because of difficulty in objectively
comparing them to frequentist methods. The method
proposed by Morris22 is excluded because it is an approxi-
mation to REML.We excluded the positive DL estimator,18

which truncates heterogeneity variance estimates below
0.01, because any positive cut‐off value could be applied.

The included heterogeneity variance estimators are
listed in Table 1. This table also includes acronyms for
the estimators used throughout this paper. Their formu-
lae are given as follows.
2.3 | Method of moments approach
(estimators 1‐5)

Five estimators included in this study can be derived from
the method of moments approach, which is based on the
generalised Q statistic23:

QMM ¼ ∑k
i¼1ai bθi−bθ� �2

;

TABLE 1 Nine heterogeneity variance estimators included in

this study

Estimator Acronym

Method of moments estimators (truncated)

1 DerSimonian‐Laird DL

2 Cochran ANOVA CA

3 Paule‐Mandel PM

4 Two‐step Cochran ANOVA PMCA

5 Two‐step DerSimonian‐Laird PMDL

Nontruncated estimators

6 Hartung‐Makambi HM

7 Sidik‐Jonkman SJ

8 Alternative Sidik‐Jonkman SJCA

Maximum likelihood estimators

9 Restricted maximum likelihood REML
The weight assigned to study i is denoted by ai and calcu-
lated differently depending on which of the five method

of moments estimators is used. bθ is given by Formula
(2) with study weights wi = ai. By equating QMM to its
expected value, the following general formula for the
heterogeneity variance can be derived23:

bτ2 ¼ max 0;

QMM−∑
k
i¼1aibσ2i þ∑k

i¼1a
2
i bσ2i

∑k
i¼1ai

∑k
i¼1ai−

∑k
i¼1a

2
i

∑k
i¼1ai

8>>>><
>>>>:

9>>>>=
>>>>;
: (3)

1. The DL estimator1 uses the fixed‐effect model

weights ai ¼ 1=bσ2i , which leads to the formula:

bτ2DL ¼ max 0;
∑k

i¼1 1=bσ2i� � bθi−bθFE� �2
− k−1ð Þ

∑k
i¼1 1=bσ2i� �

−
∑k

i¼1 1=bσ2i� �2

∑k
i¼1 1=bσ2i� �

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
:

2. Cochran's ANOVA (CA) estimator uses equal
study weights ai = 1/k, leading to

bτ2CA ¼ max 0;
1

k−1
∑k

i¼1
bθi−bθCA� �2

−
1
k
∑k

i¼1bσ2i
� �

;

where bθCA is calculated from Formula (2) with study
weights wi = 1/k.

3. The Paule‐Mandel (PM) estimator uses the random‐

effects model study weights, defined by substituting

ai ¼ 1= bσ2i þ bτ2PM� �
into Formula (3). Since ai is a

function of bτ2PM , there is no closed‐form expression
for bτ2PM , and iteration is required to find the solution.
Iterative algorithms including those suggested by
Bowden et al24 and Jackson et al25 always converge.
The same estimator has been derived independently
of the methods of moments approach and is therefore
often referred to as the empirical Bayes estimator in
the literature.26

4. The two‐step CA estimator also uses PM random‐

effects weights but restricts iteration to two steps
(PMCA). Cochran's ANOVA is used to initially estimate
τ2; thus, a closed‐form expression can be derived by

substituting ai ¼ 1= bσ2i þ bτ2CA� �
into Formula (3).

5. The two‐step DL estimator (PMDL) has similar

weights as PMCA but uses the DL method to calculate

an initial estimate of τ2. Therefore, the study weights

are ai ¼ 1= bσ2
i þ bτ2DL� �

.
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All five of these methods can produce negative vari-
ance estimates and are truncated to zero in such cases.
2.4 | Hartung‐Makambi (estimator 6)

Hartung and Makambi7 proposed a correction to the DL

estimator so that bτ2 is always positive and truncation is
not required. The formula is given by

bτ2HM ¼
∑k

i¼1 1=bσ2
i

� � bθi−bθFE� �2
� 	2

∑k
i¼1 1=bσ2

i

� �
−
∑k

i¼1 1=bσ2i� �2

∑k
i¼1 1=bσ2i� �

0
B@

1
CA 2 k−1ð Þ þ∑k

i¼1 1=bσ2i� � bθi−bθFE� �2
� 	:

2.5 | Sidik‐Jonkman (estimators 7 and 8)

Sidik and Jonkman8 proposed the following two‐step esti-
mator that only produces positive τ2 estimates:

bτ2SJ ¼ 1
k−1

∑k
i¼1

1

1þ bσ2i =bτ20� � bθi−bθSJ� �2
;

where bτ20 ¼ 1
k−1

∑k
i¼1

bθi−bθCA� �2
is the initial heterogene-

ity variance estimate and bθSJ is calculated from Formula
(2) with weights wi ¼ 1= 1þ bσ2i =bτ20� �� �

.

Sidik and Jonkman8 noted that an alternative formula

for bτ20 may lead to an estimator with better properties. In
a subsequent paper,4 they proposed an alternative initial
estimate bτ20 ¼ max 0:01;bτ2CAn o

, where bτ2CA is CA estimate of
the heterogeneity variance (estimator 2).
2.6 | Restricted maximum likelihood
(estimator 9)

To derive the REML estimator, the log‐likelihood func-
tion from the random‐effects model (1) derived from the
maximum likelihood method21 is transformed so that it
excludes the parameter θ.9 In doing so, REML avoids
making the assumption that θ is known and is therefore
thought to be an improvement on the original maximum
likelihood estimator.13 This results in the following mod-
ified log‐likelihood function:

l ¼ −
k
2
ln 2πð Þ−1

2
∑k

i¼1ln σ2i þ τ2
� �

−
1
2
∑k

i¼1

bθi−bθ� �
σ2
i þ τ2

−
1
2
ln ∑k

i¼1
1

σ2i þ τ2

� 	
:

Maximising this modified log‐likelihood function with
respect to τ2 (by differentiating and setting equal to zero)
results in the following formula for the heterogeneity
variance:
bτ2REML ¼ max 0;
∑k

i¼1a
2
i

bθi−bθRE� �2
−bσ2i

� 	
∑k

i¼1a
2
i

þ 1

∑k
i¼1ai

8>><
>>:

9>>=
>>;;

where ai ¼ 1= bσ2i þ bτ2REML

� �
.

The heterogeneity variance estimate is calculated
through a process of iteration. Fisher scoring algorithm
is used for iteration in this study, as implemented in the
metafor package in R.27
2.7 | Confidence interval methods for the
summary effect

In this study, we also investigate how choice of a particular
heterogeneity variance estimation method may impact on
the estimate of the summary effect θ and its confidence
interval. As we described earlier, the inverse‐variance
method is typically used to estimate θ in a random‐effects

meta‐analysis, so we calculate bθ using this method
throughout. The following are three methods to estimate
a corresponding confidence interval.

A Wald‐type confidence interval can be calculated as1

bθ±Z 1−Cð Þ=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var bθ� �r

Var bθ� �
¼ 1= ∑k

i¼11= bσ2i þ bτ2� �� �
;

(4)

where C is the coverage level of the confidence interval
and Z(1 − C)/2 is the (1 − C)/2 centile of the standard
normal distribution (eg, Z(1 − 0.95)/2 = 1.96).

Alternatively, a t distribution can be assumed for the
summary effect with k − 1 degrees of freedom28:

bθ±tk−1; 1−Cð Þ=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var bθ� �r

;

where tk − 1, (1 − C)/2 is the (1 − C)/2 centile of the t dis-

tribution with k − 1 degrees of freedom and Var bθ� �
is

calculated from Formula (4).
The Hartung‐Knapp‐Sidik‐Jonkman (HKSJ) method29,30

also relies on a t‐distribution and uses an alternative

weighted variance for bθ:
bθ±tk−1; 1−Cð Þ=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarHKSJ bθ� �r

VarHKSJ bθ� �
¼

∑k
i¼1ai bθi−bθ� �2

k−1ð Þ∑k
i¼1ai

;



LANGAN ET AL. 87
where ai ¼ 1= bσ2i þ bτ2� �
, bθ is calculated from Formula (2)

and bτ2 can be estimated using any of the methods outlined
in this paper.

This method is equivalent to the t distribution
method, but its variance is multiplied by a scaling fac-

tor ∑k
i¼1ai bθi−bθ� �2

= k−1ð Þ:30,31 In certain cases, this scal-

ing factor can be less than one, which leads to a narrower
confidence interval than the standard t distribution
approach and can also lead to a narrower interval compared
with the Wald‐type method in few cases.32 A variation of
this method has been proposed to deal with this by
constraining the scaling factor to be≥1.7 However, through-
out this study, the HKSJmethod without constraint is used.
3 | SIMULATION STUDY DESIGN

All simulations and analyses were carried out in R version
3.2.2. The package metafor27 was used to run simulated
meta‐analyses and calculate heterogeneity variance esti-
mates from methods coded in this package, bespoke code
was used for those that are not. A study protocol was
agreed by all authors before running these simulations
and is available upon request from the first author.
3.1 | Simulation methods

For studies i = 1, …, k in each meta‐analysis, true study
effects θi are simulated from the distribution N(θ, τ2).
Parameters θ, τ2, and k take values as defined in Section
3.2. Study sample sizes Ni are generated from a distribu-
tion also detailed in Section 3.2 and are then split evenly
between the two study groups n1i and n2i. Participant‐
level data are then simulated for both continuous and
binary outcomes, and effect sizes and within‐study
variances (θi and σ2i ) are estimated from these data. In
continuous outcome meta‐analyses, effects are measured
as a standardised mean difference, and in binary outcome
meta‐analyses, effects are measured as a log‐odds ratio.

For each study simulated from continuous outcome
data, the following steps are carried out:

1. Generate n1i observations from N 0; σ21i
� �

and n2i
observations from N θi; σ22i

� �
. We assume variances

σ21i and σ22i in the two groups are equal and, without
loss of generality, set them equal to 1.

2. Calculate the sample means and standard deviations
of these observations.

3. Calculate bθi and bσ2i for standardised mean differences
by Hedges g method, thus accounting for small
sample bias of standardised mean differences (docu-
mented by Borenstein et al,33 eqs 2.23 and 2.24).
For studies with an odds ratio outcome measure,

1. Generate an average event probability between the
two study groups (pi) from one of the distributions
as defined in Section 3.2. Although this simulation
approach is not common, Smith et al34 has previously
defined a Bayesian meta‐analysis model that included
the same pi parameter.

2. Derive underlying event probabilities for each study
group (p1i and p2i) from the solutions to the following
simultaneous equations:

pi ¼ p1i þ p2ið Þ=2

θi ¼ log p2i 1−p1ið Þð Þ= p1i 1−p2ið Þð Þ½ �:

3. Simulate cell counts of the 2 × 2 contingency table
from the distributions Bin(n1i,p1i) and Bin(n2i,p2i).
Apply a continuity correction of 0.5 to studies with
zero cell counts.

4. Calculate bθi and bσ2i for log odds ratios from the stan-
dard formulae in Borenstein et al.33
3.2 | Parameter values

Parameter values are chosen to represent the range of
values observed in published meta‐analyses in the
Cochrane Database of Systematic Reviews10 and based on
parameter values from previous simulation studies.11 For
all combinations of parameter values as outlined in this
section, 5000meta‐analyses are simulated. Binary outcome
meta‐analyses are simulated with log‐odds ratios of
θ = {0, 0.5, 1.1, 2.3} (corresponding to odds ratios of 1,
1.65, 3, and 10). Standardised mean difference meta‐analy-
ses are simulated with θ = 0.5 only, because previous sim-
ulation studies suggest θ has no noticeable effect on any of
the results.13,17 Sample sizes are generated from the follow-
ing five distributions to represent meta‐analyses contain-
ing small, small‐to‐medium, medium, large, and small
and large studies: (1)Ni=40, (2)Ni~U(40,400), (3)Ni=400,
(4) Ni~U(2000, 4000), and (5) Ni = 40 (small) in half of
studies and half selected from Ni~U(2000, 4000) (large). If
k is odd in the last scenario, one study is selected randomly
(with probability 0.5) to be small or large. For odds ratio
meta‐analyses, the average event probability ( pi) takes
the values (1) 0.5, (2) 0.05, (3) 0.01, and (4) generated from
the distribution U(0.1,0.5). Simulated meta‐analyses
contain 2, 3, 5, 10, 20, 30, 50, and 100 studies.

Heterogeneity variance parameter values (τ2) are
defined such that the resulting meta‐analyses span a wide
range of levels of inconsistency between study effects. We
measured inconsistency using the I2 statistic,32 an approx-
imate measure of the relative size of the heterogeneity
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variance to the total variability in effect estimates
(the sum of within‐study error variance and between‐
study heterogeneity). The chosen τ2 values result in
meta‐analyses with average I2 values of 0%, 15%, 30%,
45%, 60%, 75%, 90%, and 95% and are given in
Appendix S2. I2 values are calculated using the true τ2

parameter estimates but still vary between simulated
meta‐analyses because of the simulated variation in the
standard errors. Parameter values for τ2 vary between
scenarios with different distributions forNi and pi to main-
tain a consistent range of I2. In each scenario, τ2 is fixed,
and I2 varies between meta‐analyses; therefore, we also
present the range of I2 next to the graphs in the results.

Simulating all combinations of parameter values leads
to 320 scenarios for standardised mean difference
meta‐analyses (8(k) × 5(Ni) × 8(τ2)) and 5120 scenarios

for odds ratio meta‐analyses (8 kð Þ×5 Nið Þ×8 τ2
� �

×4 pið Þ×4 θð Þ).
Given the large number of simulated scenarios, this paper
can only show results from a representative subset of
these scenarios.
3.3 | Performance measures

Properties of heterogeneity variance estimators are mea-
sured in terms of bias and mean squared error. These
two measures are plotted proportional to the heterogene-
ity variance parameter value, so that results can be com-
pared more easily between scenarios with different τ2.

For example, a proportional bias of 100% means that bτ2
is on average twice as large as the true τ2. By the same
token, a proportional bias of −50% means that bτ2 is on
average half as large as the true τ2. Similarly, a propor-
tional mean squared error of 100% implies that the mean
squared error is equal to τ2. We also report bias of bθ and
coverage of the three included methods to calculate 95%
confidence intervals using estimates from the 11 included
heterogeneity variance estimators.
4 | RESULTS

In Section 4.1, results are presented for performance mea-
sures that relate directly to the heterogeneity variance
parameter: bias and mean squared error. In Section 4.2,
we present bias of the summary effect. In Section 4.3,
we present the coverage probability of the three confi-
dence interval methods for the summary effect.
4.1 | Properties of heterogeneity variance
parameter estimates

Estimators are compared in terms of bias in Figures 1 and 2
and in terms of mean squared error in Figures 3 and 4. The
first figure in each case shows results from standardised
mean difference meta‐analyses, and the second shows
results from odds ratio meta‐analyses. We present selected
scenarios containing small studies, small‐to‐medium stud-
ies, and small and large studies combined with scenarios
where the average I2 is either equal to 30% or 90% and for
θ = 0.5 only. For odds ratio meta‐analyses, we present
scenarios where the average event probability in each
study is uniformly distributed between 0.1 and 0.5. In
this section, results are summarised separately for each
heterogeneity variance estimator.
4.1.1 | DerSimonian‐Laird

In standardised mean difference meta‐analyses, DL is neg-
atively biased when I2 is large and study sample sizes are
small (as shown in Figure 1, bottom left). The estimator is
more negatively biased in the equivalent odds ratio meta‐
analyses, even with event rates between 0.1 and 0.5
(Figure 2). Additionally, DL is negatively biased in odds
ratiometa‐analyseswhen sample sizes are small tomedium
(Figure 2, middle left). In all other scenarios presented in
Figures 1 and 2, DL is positively biased in meta‐analyses
containing fewer than 10 to 20 studies and roughly
unbiased for those with more studies. DL has similar bias
to many estimators including PMCA, PMDL, and REML in
scenarios with small‐to‐medium studies. In meta‐analyses
with amix of small and large studies (Figures 1 and 2, third
column), DL is one of the least positively biased estimators
—distinctly lower than PM and PMCA.

DerSimonian‐Laird has a relatively low mean squared
error in the same scenarios where negative bias is also
observed (Figures 3 and 4). However, this is not necessar-
ily a good property because only underestimates can be
truncated to zero and truncation reduces the error of
the estimate. Low mean squared error is also observed
in scenarios with small and large studies where DL has
low bias (Figures 3 and 4, third column).
4.1.2 | Cochran ANOVA

Cochran ANOVA tends to produce higher estimates of
the heterogeneity variance than most other estimators
for both standardised mean difference and odds ratio
meta‐analyses. As such, CA is roughly unbiased in
scenarios with high I2 when most other estimators are
negatively biased. However, CA is one of the most posi-
tively biased estimators for low‐to‐moderate I2. CA's pos-
itive bias is particularly prominent in scenarios with
small and large studies (Figures 1 and 2, third column);
it is counterintuitive to assign equal study weights
(as the CA estimator does) in these scenarios with large
differences in study size. CA also has higher mean



FIGURE 1 Bias of heterogeneity variance estimates in standardised mean difference outcome meta‐analyses. Scenarios containing small

studies (first row), small‐to‐medium studies (second row), and small and large studies (third row). Effect size θ = 0.5. Note: the y‐axis limits

differ between plots. CA, Cochran ANOVA; DL, DerSimonian‐Laird; HM, Hartung‐Makambi; PM, Paule‐Mandel; PMCA, two‐step Cochran

ANOVA; PMDL, two‐step DerSimonian‐Laird; REML, restricted maximum likelihood; SJ, Sidik‐Jonkman; SJCA, alternative Sidik‐Jonkman

[Colour figure can be viewed at wileyonlinelibrary.com]
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squared error than most other estimators when the esti-
mator is positively biased (Figures 3 and 4).
4.1.3 | Paule‐Mandel

Paule‐Mandel has properties similar to DL in scenarios of
standardised mean difference meta‐analyses that contain
small or small‐to‐medium sized studies (Figure 1, first
and second column). In these scenarios, PM is roughly
unbiased when I2 is typically high or the meta‐analysis
has more than 20 studies and positively biased otherwise.
In scenarios where DL is negatively biased, PM often has
less negative bias, except in scenarios with highly sparse
data where all estimators perform poorly (Figure 2,
bottom left). In scenarios with a mix of small and large
studies (Figures 1 and 2, third column), PM has a
higher mean squared error and higher positive bias
than DL, PMDL, Hartung‐Makambi (HM), and REML
(Figures 1–4, third column).
4.1.4 | Two‐step CA (PMCA)

Two‐step CA uses CA as an initial estimate of heterogene-
ity. Two‐step CA's bias and mean squared error are equal
to, or somewhere between, CA and PM in all scenarios.
Given that CA and PM have high positive bias and large
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FIGURE 2 Bias of heterogeneity variance estimates in odds ratio meta‐analyses with underlying summary odds ratio 1.65 and an average

event probability between 0.1 and 0.5. Scenarios containing small studies (first row), small‐to‐medium studies (second row), and small and

large studies (third row). Effect size θ = 0.5. Note: the y‐axis limits differ between plots. CA, Cochran ANOVA; DL, DerSimonian‐Laird; HM,

Hartung‐Makambi; PM, Paule‐Mandel; PMCA, two‐step Cochran ANOVA; PMDL, two‐step DerSimonian‐Laird; REML, restricted maximum

likelihood; SJ, Sidik‐Jonkman; SJCA, alternative Sidik‐Jonkman [Colour figure can be viewed at wileyonlinelibrary.com]

90 LANGAN ET AL.
mean squared error in scenarios with small and large
studies, so too does PMCA (Figures 1–4, third column).
4.1.5 | Two‐step DerSimonian‐Laird
(PMDL)

In a similar fashion to PMCA, PMDL has bias and mean
squared error that is equal to, or somewhere between,
DL and PM in all scenarios. Two‐step DL has properties
similar to the best performing of the two estimators in
all simulated scenarios. In scenarios with large and small
studies, PMDL has low positive bias and mean squared
error similar to DL, and in scenarios where DL is
negatively biased, PMDL and PM have comparable prop-
erties. There is little difference in the properties of PMDL

and REML in all scenarios.
4.1.6 | Hartung‐Makambi

In meta‐analyses with small or small‐to‐medium study
sizes and zero or low I2, HM tends to produce relatively
high estimates of heterogeneity and therefore has rela-
tively high positive bias (Figures 1 and 2, top left). This
is perhaps because HM is a transformation of the DL
estimator that only produces positive estimates. HM
tends to produce comparatively low estimates when I2 is
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FIGURE 3 Mean squared error of heterogeneity variance estimates in standardised mean difference outcome meta‐analyses. Scenarios

containing small studies (first row), small‐to‐medium studies (second row), and small and large studies (third row). Effect size θ = 0.5.

Note: the y‐axis limits differ between plots. CA, Cochran ANOVA; DL, DerSimonian‐Laird; HM, Hartung‐Makambi; PM, Paule‐Mandel;

PMCA, two‐step Cochran ANOVA; PMDL, two‐step DerSimonian‐Laird; REML, restricted maximum likelihood; SJ, Sidik‐Jonkman; SJCA,

alternative Sidik‐Jonkman [Colour figure can be viewed at wileyonlinelibrary.com]
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moderate or high and has more negative bias than DL in
these scenarios. HM has a comparatively low mean
squared error in all scenarios presented (Figures 3 and
4), including scenarios where HM has high positive bias.
Hartung‐Makambi is one of the best performing estima-
tors in meta‐analyses containing small and large studies
(Figures 1–4, third column), with properties comparable
with DL, PMDL, and REML.
4.1.7 | Sidik‐Jonkman (SJ)

Sidik‐Jonkman typically produces one of the highest esti-
mates of the heterogeneity variance in both standardised
mean difference and odds ratio meta‐analyses, even
higher than the other estimators that only produce posi-
tive estimates (HM and SJCA). As such, SJ has consider-
able positive bias and high mean squared error in meta‐
analyses with up to moderate I2. For example, in
standardised mean difference meta‐analyses containing
small‐to‐medium sized studies and low I2 (Figure 1, top
middle), SJ has bias of more than 100% when almost all
other estimators are roughly unbiased.
4.1.8 | Alternative Sidik‐Jonkman (SJCA)

SJCA generally has improved properties over the original SJ
estimator. In meta‐analyses with small studies (as shown
in Figures 1 and 2, first column), SJCA is one of the least
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FIGURE 4 Mean squared error of heterogeneity variance estimates in odds ratio meta‐analyses with underlying summary odds ratio 1.65 and

an average event probability between 0.1 and 0.5. Scenarios containing small studies (first row), small‐to‐medium studies (second row), and

small and large studies (third row). Effect size θ = 0.5. Note: the y‐axis limits differ between plots. CA, Cochran ANOVA; DL, DerSimonian‐

Laird; HM, Hartung‐Makambi; PM, Paule‐Mandel; PMCA, two‐step Cochran ANOVA; PMDL, two‐step DerSimonian‐Laird; REML, restricted

maximum likelihood; SJ, Sidik‐Jonkman; SJCA, alternative Sidik‐Jonkman [Colour figure can be viewed at wileyonlinelibrary.com]
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biased estimators, with bias similar to many of the trun-
cated methods including DL, PM, and REML. As the typi-
cal study size increases, the extent of SJCA's positive bias
also increases, such that it becomes one of the most posi-
tively biased estimators in meta‐analyses with small and
large studies (Figures 1 and 2, third column). In scenarios
where SJCA has positive bias, it also has relatively high
mean squared error (i.e., in meta‐analyses with large stud-
ies, see Figures 3 and 4, third column).
4.1.9 | Restricted maximum likelihood

REML has similar properties to PMDL and DL in most
scenarios. In a small number of scenarios where DL is
negatively biased, REML is also negatively biased but
often to a much lesser extent (observed most prominently
in Figure 2, bottom left). REML has relatively low bias
and low mean squared error comparable with DL, HM,
and PMDL in scenarios containing small and large
studies.
4.2 | Summary effect estimates

Results show that summary effect estimates (bθ) are almost
unbiased in all scenarios of standardised mean difference
meta‐analyses (θ = 0.5) and odds ratio meta‐analyses
with common events. However, summary effect estimates
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are biased towards the null value of zero in odds ratio
meta‐analyses with rare events. This is likely to be partly
a consequence of the choice of continuity correction (we
added 0.5 to zero cell counts), and the degree of bias
was similar across all heterogeneity variance estimators.
We present bias of the summary effect in Supporting
Information only.
4.3 | Coverage of 95% summary effect
confidence intervals

Coverage is presented in Figure 5 for all combinations of
heterogeneity variance estimators and (95%) Wald‐type, t
distribution, and HKSJ confidence interval methods for
FIGURE 5 Coverage of 95% confidence intervals of the summary e

medium studies (Ni = U(40,400)). Coverage of Wald‐type (first row), t d

intervals presented. CA, Cochran ANOVA; DL, DerSimonian‐Laird; HM

ANOVA; PMDL, two‐step DerSimonian‐Laird; REML, restricted maximu

[Colour figure can be viewed at wileyonlinelibrary.com]
the summary effect. Results are presented for
standardised mean difference meta‐analyses only, but
results are consistent with the equivalent scenarios of
odds ratio meta‐analyses with common events (event
probabilities 0.1 to 0.5, see Appendix S3).
4.3.1 | Wald‐type method

Coverage of the 95% Wald‐type confidence interval can
differ by up to 5% between heterogeneity variance estima-
tors, up to 30% between numbers of studies, and up to
20% between heterogeneity values. Coverage varies
between 96% and 100% when studies are homogeneous
and can be as low as 65% when the typical I2 is 90%
ffect in standardised mean difference meta‐analyses with small‐to‐

istribution (second row), and HKSJ (third row) confidence

, Hartung‐Makambi; PM, Paule‐Mandel; PMCA, two‐step Cochran

m likelihood; SJ, Sidik‐Jonkman; SJCA, alternative Sidik‐Jonkman
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(τ2 = 0.187) and meta‐analyses have two or three studies.
When heterogeneity is present, the confidence interval's
coverage tends towards the nominal value of 95% as the
number of studies increases.
4.3.2 | Standard t distribution method

Coverage of the t distribution 95% confidence interval is
generally more robust to changes in the mean I2, as
shown in Figure 5. In these scenarios, however, coverage
can differ by up to 5% depending on the heterogeneity
variance estimator used and the number of studies. When
there are 20 studies or more, 95% t distribution confi-
dence intervals have a coverage of 94% to 97% but per-
form conservatively with coverages close to 100% when
there are fewer than 20 studies. The heterogeneity vari-
ance estimator that works best with this confidence inter-
val method varies considerably between scenarios, so it is
difficult to select one overall.
4.3.3 | HKSJ method

The HKSJ confidence interval for the summary effect has
better coverage than the other two methods in all scenar-
ios. This method has a coverage of 94% to 96% in
standardised mean difference meta‐analyses presented in
Figure 5 and is insensitive to the choice of heterogeneity
variance estimator. The method can produce confidence
intervals with suboptimal coverage in odds ratio meta‐
analyses with rare events, where all meta‐analysis
methods perform poorly (as demonstrated in Appendix
S4).
4.4 | Generalisability of presented results

The results presented so far come from a subset of all sim-
ulation scenarios, but these results can be generalised to
some extent. All results are presented in Supporting
Information.

First, all results presented in the main paper come
from scenarios with standardised mean difference and
log‐odds ratio summary effects of 0.5 (odds ratio = 1.65),
but results were consistent with more extreme odds ratio
effects in most scenarios. The exception is in odds ratio
meta‐analyses containing only small studies with rare
events (average event probability = 0.05), where a larger
effect size (odds ratio = 10) produced heterogeneity vari-
ance estimates with more negative bias across all
methods. Results from other effect sizes are found in
Supporting Information.

Second, results are not presented in the main paper
from scenarios where all heterogeneity variance methods
failed with considerable negative bias. This occurred in
all scenarios of odds ratio meta‐analyses with rare events
(event probability = 0.05 and 0.01) except where study
sizes were large (sample size > 4000 per study). In these
scenarios, summary effects were considerably biased,
and confidence interval methods also failed to produce
reasonable coverage. For example, simulation results
show that the HKSJ method can have coverage as low
as 85% in odds ratio meta‐analyses with small‐to‐medium
sized studies with an underlying event probability of 0.05
(see Appendix S4). Poor properties were perhaps observed
in these scenarios because many studies contained zero
events and a continuity correction was applied (0.5 was
added to all 2 × 2 cell counts in these simulations). An
alternative continuity correction may have produced dif-
ferent results.

Finally, results presented thus far are from meta‐anal-
yses with typical I2 values of 0%, 30%, 60%, and 90% (cor-
responding to four heterogeneity variance parameter
values). Meta‐analyses with other typical I2 values were
simulated, but the four presented gave an adequate
description of the properties of methods across all levels
of inconsistency.
5 | DISCUSSION

The DL heterogeneity variance estimator is not recom-
mended for widespread use in two‐stage random‐effects
meta‐analysis and, therefore, should not be the default
method for meta‐analysis in statistical software pack-
ages; it produces estimates with more negative bias
than most other methods in odds ratio meta‐analyses
with small studies or rare events and to a lesser extent
in standardised mean difference meta‐analyses with
small studies. This finding can perhaps be explained
by DL's fixed‐effect study weights that are based solely
on estimated within‐study variances; these variances
are imprecise and likely to be biased under such condi-
tions. This observation is in agreement with previous
simulation studies,4,12 as identified in a systematic
review.11 Viechtbauer13 and Böhning et al35 stated that
DL is unbiased when within‐study variances are
known. However, DL is one of the better performing
estimators in meta‐analyses with large differences in
study size.

This simulation study identified three heterogeneity
variance estimators with more reasonable properties:
REML,9 PM,6 and the two‐step PM that uses a DL initial
estimate.23 Paule‐Mandel is often approximately unbiased
when DL is negatively biased. However, results also show
PM has high positive bias when there are large differ-
ences in study size. This can perhaps be attributed to
the random‐effects study weights used in this method,
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which can lead to small studies being given a relatively
large weight under heterogeneous conditions. A similar
issue regarding the use of random‐effects study weights
for summary effect estimation has been noted else-
where.36 The two‐step DL estimator (PMDL) inherits most
of the best properties of DL and PM methods and is sim-
ple to compute. Restricted maximum likelihood has very
similar properties to this two‐step estimator and is
already widely known, recommended in two previous
simulation studies for meta‐analyses with continuous3,13

and binary13 outcomes. Furthermore, REML is already
available in many statistical software packages.27,37 Of
those with reasonable properties, REML is the only esti-
mator that assumes normality of effect sizes, but a previ-
ous simulation study38,39 showed all these methods are
reasonably robust under non‐normal conditions.

One of the aims of this simulation study was to inves-
tigate when it is appropriate to rely on one estimate of the
heterogeneity variance. Results show all estimators are
imprecise and often fail to detect high levels of heteroge-
neity in meta‐analyses containing fewer than 10 studies.
Furthermore, only 14% of meta‐analyses in the Cochrane
Database of Systematic Reviews contain 10 studies or
more,10 so it is rarely appropriate to rely on one estimate
of heterogeneity in this setting. All estimators have poor
properties even in meta‐analyses containing high num-
bers of studies when study sizes are small or the event
of interest is rare.

Estimates of the summary effect and its HKSJ confi-
dence interval are of less cause for concern and perform
well even in meta‐analyses with only two studies. In par-
ticular, the HKSJ confidence interval offers a large
improvement in coverage over the commonly used
Wald‐type confidence interval. However, caution must
still be applied when dealing with meta‐analysis datasets
with rare events, where summary effects are biased and
the HKSJ confidence interval method can have coverage
as low as 85%. Summary effect estimates in this study
were calculated using the inverse‐variance approach,
although the use of the Mantel‐Haenszel method has
been recommended for rare events18,40 and may have
improved properties in these scenarios. These findings
agree with a previous simulation study,41 in which the
HKSJ method was compared with other confidence inter-
val methods for both continuous and binary outcome
measures. The results presented in this paper show the
HKSJ method is robust to changes in the heterogeneity
variance estimate.

Our findings do not concur with some previous simu-
lation studies. In all cases, this can be attributed to differ-
ences in parameter values and other differences in
simulation study design. The original estimator proposed
by Sidik and Jonkman8 performed well in the author's
own simulations, yet simulations in this study show they
have considerable positive bias in meta‐analyses of up to
moderate I2. This was not observed by Sidik and
Jonkman8 because simulated meta‐analyses were only
presented with high I2.11 The method of PM has been rec-
ommended based on the results of three previous simula-
tion studies,3,12,15 but these studies did not simulate meta‐
analyses with moderate‐to‐large differences in study size,
where PM has considerable positive bias. Novianti et al3

only recommended REML for continuous outcome
meta‐analyses and observed a small negative bias when
the outcome is binary and high I2; this bias was less
pronounced in our simulations with low‐to‐moderate I2

that Novianti et al3 did not include in their simulations.11

The limitations of this simulation study are as follows.
First, only a subset of all confidence interval methods for
the summary effect are included. Results show the HKSJ
method is more robust than the Wald method to the
choice of heterogeneity variance estimator, but no confi-
dence interval method can be recommended solely from
the results of this study. Other methods include the pro-
file likelihood method,21 which has also been shown as
a better alternative to the Wald method in simulated
meta‐analysis data42 and recommended elsewhere.43 Sec-
ond, a continuity correction of 0.5 was applied whenever
simulated studies with a binary outcome contained zero
events, but other methods with a better performance are
available.44 This choice may have affected the results in
scenarios where the event is rare (ie, 0.05), but alternative
continuity corrections are unlikely to have led to mean-
ingful improvements where the event rate is extremely
rare (ie, 0.01) and all random‐effects methods fail in
terms of all performance measures. We assumed effects
to be normally distributed, and although this is a limita-
tion, it has been shown that most of the investigated
methods are robust even in extreme non‐normal distribu-
tions.38 Third, our analyses assume that all studies pro-
vide unbiased estimates of the true effects underlying
them. In practice, results of studies may be biased if the
studies are performed suboptimally, and meta‐analyses
may be biased if studies are missing for reasons related
to their results (eg, due to publication bias). These biases
can affect estimation of heterogeneity (both upwardly or
downwardly) and lead to inappropriate conclusions.
Finally, although the study aimed to simulate a compre-
hensive range of scenarios, this range could never be
complete given how diverse meta‐analyses are in practice;
not all outcome measures were included (eg, hazard
ratios), and the distributions from which sample sizes
were drawn in this study cannot be considered
representative of all observed distributions because study
sample sizes are unlikely to conform to a defined
distribution.



TABLE 2 A summary of results and recommendations (considering only REML, PM and PMDL

heterogeneity variance methods, and HKSJ confidence interval)

Abbreviations: HKSJ, Hartung‐Knapp‐Sidik‐Jonkman; PM, Paule‐Mandel; PMDL, two‐step DerSimonian‐Laird;
REML, restricted maximum likelihood.

96 LANGAN ET AL.
We compared methods in the context of a classical
two‐stage meta‐analysis where study effect estimates
and their standard errors are calculated first and then
combined at the second final stage. Alternatively, one‐
stage meta‐analyses can be undertaken using individual
participant data using mixed modelling techniques;
these raw data can be derived trivially from study‐level
2 × 2 contingency tables for binary outcome meta‐anal-
yses.45,46 Stijnen et al45 explain that this approach
makes random‐effects meta‐analyses more feasible with
sparse data and does not require a continuity correction
in case of zero events. Jackson et al47 reviewed model-
ling approaches for this type of meta‐analysis data
and suggest these models can offer improved statistical
inference on the summary effect. However, these
models can present additional numerical issues given
their complexity. Future work comparing the properties
of heterogeneity variance methods between one‐stage
and two‐stage binary outcome meta‐analyses would be
informative.

The HKSJ method is generally preferred over the
Wald‐type method. However, Wiksten et al31 showed
it can occasionally lead to less conservative results,
even when the Wald method uses a fixed‐effect vari-
ance structure. Sidik and Jonkman4 proposed a modifi-
cation to the HKSJ method to ensure the resulting
confidence interval is at least as wide as the Wald‐type
fixed‐effect confidence interval. We did not apply this
modification in our study. A simulation study by Rover
et al48 found the modified method provides coverage
closer to the nominal level when differences in study
size were large.

Summarising the properties of a comprehensive list of
heterogeneity variance estimators, compared over many
combinations of parameter values, was the biggest
challenge of this study. By simulating meta‐analyses from
a wide range parameter values, inevitably, there are
scenarios that reflect meta‐analyses rarely observed in
practice. For example, most meta‐analyses contain very
few studies,10,49 but meta‐analyses with up to 100 studies
were simulated in order to show results over the full
range of possible meta‐analysis sizes. An attempt was
made to focus more on the scenarios representative of
real meta‐analyses when interpreting results, but this
was inevitably subjective.
6 | CONCLUSION

A summary of our recommendations are given in Table 2.
The two‐step DL estimator (PMDL) and REML can often
be biased but overall have the most reasonable properties
in standardised mean difference and odds ratio meta‐
analyses. Of these two estimators, REML is recommended
on the basis of these results because it is already widely
known, available in most statistical software packages,
and consistent with the method commonly used for
one‐stage meta‐analyses using individual participant
data.50 The two‐step DL estimator is recommended as
an alternative if a simpler, noniterative method is
required.

The HKSJ confidence interval for the summary effect
is generally recommended over the standard t distribu-
tion and Wald‐type methods, particularly in binary out-
come meta‐analyses with rare events and the number of
studies included is less than 20. To be consistent, we rec-
ommend the same REML estimate of the heterogeneity
variance to calculate this confidence interval. However,
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this is inconsequential given how robust this confidence
interval is to changes in the heterogeneity variance
method in most scenarios.

A REML point estimate, or indeed any other single
estimate of heterogeneity, should not be relied on to
gauge the extent of heterogeneity in most meta‐analyses.
Confidence intervals should always be reported to express
imprecision of the heterogeneity variance estimate.
However, a point estimate can usually be used reliably
to calculate a summary effect with an HKSJ confidence
interval.
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Appendix 1: Proportional bias (left-hand-side) and proportional mean squared error 1 
(right-hand-side) in selected scenarios with estimators proposed by Rukhin (B0, BP) and 2 
Malzahn, Böhning and Holling (MBH) included 3 
Scenarios containing standardised mean difference meta-analyses (ߠ ൌ 0.5) with 4 
small-to-medium study sizes ( ௜ܰ ൌ 40 െ 400) and an average ܫଶ of 60%. 5 
 6 
See separate file for figure.  7 
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Appendix 2: Heterogeneity variance parameter values for each simulated scenario. 8 

 
Study sizes 

Avg. 
event 
probabilit
y 

ଶܫ

ൌ
15
%

 

ଶܫ

ൌ
30
%

 

ଶܫ

ൌ
45
%

 

ଶܫ

ൌ
60
%

 

ଶܫ

ൌ
75
%

 

ଶܫ

ൌ
90
%

 

ଶܫ

ൌ
95
%

 

odds ratio meta-analyses (ߠ ൌ 0.5) 

small 

0.5 

0.0670 0.1780 0.3440 0.6330 1.330 4.500 15.60 

small-to-medium 0.0144 0.0333 0.0655 0.1220 0.2440 0.7800 1.670 

medium 0.0067 0.0174 0.0333 0.0560 0.1220 0.3670 0.7800 

small and large 0.0025 0.0066 0.0144 0.0230 0.0756 0.3560 0.7800 

large 0.0001 0.0023 0.0046 0.0082 0.0166 0.0450 0.0100 

small 

0.1 to 0.5 

0.0944 0.2330 0.4450 0.8560 1.89 20.00 * 

small-to-medium 0.0178 0.0433 0.0855 0.1545 0.3220 1.110 2.300 

medium 0.0089 0.0233 0.0433 0.0780 0.1560 0.4500 1.110 

small and large 0.0036 0.0084 0.0178 0.0356 0.0945 0.4560 1.220 

large 0.0012 0.0023 0.0058 0.0107 0.0222 0.0645 0.1340 

small 

0.05 

0.4220 1.156 2.560 7.560 * * * 

small-to-medium 0.0755 0.1890 0.3780 0.7450 1.780 * * 

medium 0.0340 0.0967 0.1890 0.3560 0.7560 3.440 * 

small and large 0.0144 0.0345 0.0745 0.1670 0.4330 2.300 * 

large 0.0053 0.0133 0.0255 0.0445 0.0890 0.2300 0.5600 

small 

0.01 

2.780 14.50 * * * * * 

small-to-medium 0.3780 1.110 2.450 6.700 * * * 

medium 0.1200 0.4500 1.067 2.440 7.800 * * 

small and large 0.0656 0.1780 0.3400 0.1000 3.670 * * 

large 0.0245 0.0622 0.1220 0.2330 0.4780 1.780 * 

standardised mean difference meta-analyses (ߠ ൌ 0.5) 

small - 0.0178 0.0444 0.0845 0.156 0.322 0.1 2.440 

small-to-medium - 0.00345 0.00856 0.0156 0.023 0.056 0.12 0.3400 

medium - 0.00178 0.00444 0.00844 0.01545 0.0311 0.089 0.1200 

small and large - 
0.00065

6 
0.00156 0.00344 0.00744 0.0189 0.089 0.1200 

large - 
0.00024

4 
0.00056 0.001133 0.00211 0.00422 0.0133 0.0256 

߬ଶ consistent between numbers of studies and distributions of study effects. ܫଶ ൌ 0% always 9 
corresponds to ߬ଶ ൌ 0 so these scenarios are not included in the table. 10 
* the given average ܫଶ could not be attained for any ߬ଶ value, so meta-analyses were not simulated. 11 

  12 
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Appendix 3: Coverage of 95% confidence intervals of the summary effect in odds ratio 13 
meta-analyses with small-to-medium studies (࢏ࡺ ൌ ,ሺ૝૙ࢁ ૝૙૙)) and an average event 14 
probability between 0.1 and 0.5 15 
Coverage of Wald-type (first row), t-distribution (second row), and HKSJ (third row) 16 
confidence intervals presented. 17 
 18 
See separate file for figure.  19 
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Appendix 4: Coverage of 95% confidence intervals of the summary effect in odds ratio 20 
meta-analyses with small-to-medium studies (࢏ࡺ ൌ ૝૙ െ ૝૙૙) and an average event 21 
probability of 0.05. 22 
Coverage of Wald-type (first row), t-distribution (second row) and Hartung-Knapp (third 23 
row) confidence intervals presented. 24 
There was no such ߬ଶ that produced a mean ܫଶ of 90% so scenarios where ܫଶ ൌ 60% are 25 
presented instead. Effect size ߠ ൌ 0.5. 26 
 27 
See separate file for figure. 28 








