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Several methods are available to estimate the total and residual amount of heterogeneity

in meta-analysis, leading to different alternatives when estimating the predictive power in

mixed-effectsmeta-regressionmodels using the formula proposed by Raudenbush (1994,

2009). In this paper, a simulation study was conducted to compare the performance of

seven estimators of these parameters under various realistic scenarios in psychology and

related fields. Our results suggest that the number of studies (k) exerts the most

important influence on the accuracy of the results, and that precise estimates of the

heterogeneity variances and the model predictive power can only be expected with at

least 20 and 40 studies, respectively. Increases in the average within-study sample size (�N)
also improved the results for all estimators. Some differences among the accuracy of the

estimators were observed, especially under adverse (small k and �N) conditions, while the
results for the different methods tended to convergence for more optimal scenarios.

1. Introduction

Meta-analysis is a form of research synthesis that allows researchers to quantitatively

integrate the results from a set of studies on the same topic (Borenstein, Hedges, Higgins&

Rothstein, 2009; Cooper, Hedges & Valentine, 2009). Since the outcomes from the

individual studies are often expressed in different measurement units, their results are
typically converted into a common metric through a standardized effect size index (such

as the standardized mean difference). The main objectives in a meta-analysis are to obtain

an overall effect size estimate, to assess the heterogeneity among the individual effect size

estimates, and to search for moderators that can account for (at least) part of that

heterogeneity (Hedges & Olkin, 1985; S�anchez-Meca & Mar�ın-Mart�ınez, 2010).
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The results or effect sizes of the individual studies in a meta-analysis usually exhibit

some heterogeneity (e.g., Sidik & Jonkman, 2005b; Thompson & Higgins, 2002). This

means that, although a set of studies analysing the same phenomenon (e.g., effectiveness

of psychological treatments and interventions on a given disorder) are selected, their
results are likely to differ to some extent. For that reason, moderator analyses typically

constitute a crucial element of a meta-analysis (Lipsey, 2009). In a moderator analysis, the

goal is to test the influence of one or more study characteristics (e.g., type and duration of

the intervention, severity of the disorder in the sample patients) on the outcome variable

(e.g., efficacy of the intervention, assessed through the comparison between a treatment

and a control group). Such analyses can be conducted by fitting linear models to the data

where themoderators constitute the predictor variables and the effect sizes are employed

as the criterion variable (Borenstein et al., 2009). This leads to so-called meta-regression
models (Thompson & Higgins, 2002). In a meta-regression model, both continuous and

categorical moderators can be included.

When carrying out a meta-analysis, some statistical model must be assumed for the

effect size distribution, and the model choice will have an influence on the validity and

generalizability of the results from the meta-analysis. Two kinds of statistical models have

been employed for the majority of meta-analytic reviews conducted so far, namely the

fixed-effects and random-effects models (Hedges & Vevea, 1998; Schmidt, Oh & Hayes,

2009). Nowadays, most researchers agree that themodel choice should bemade based on
the generalizability intended for the results (National Research Council, 1992). Only

random-effects models, which include an additional variance component to model the

between-studies heterogeneity, allow for generalization to studies different to the ones

included in the meta-analysis, which is usually the goal when carrying out such a review.

Thus, random-effects models are a suitable option for most meta-analyses (Hedges &

Vevea, 1998; Raudenbush, 1994, 2009).

Under a random-effects model, it is assumed that the study outcomes (e.g., treatment

efficacy) will fluctuate as a consequence of two sources of variation: the sampling of the
participants for each study; and the differential characteristics of the studies (e.g.,

different conditions of the sample, treatment application, methodology, or context in

each individual study). Themagnitude of the latter can be analysed through the estimation

of the heterogeneity (or between-studies) variance, τ2, which represents the excess

variation among the effects over that expected from sampling error alone (Thompson &

Sharp, 1999). In contrast to the sampling variances from each effect size, which quantify

the random sampling error, τ2 denotes systematic differences due to the influence of

characteristics from the individual studies. The identification of some of these charac-
teristics (or moderators) is the main objective of the moderator analyses. Since the

moderators are usually included as fixed effects in the model, the addition of a random

effect (the effect sizes in the studies) to model the heterogeneity among the studies leads

to mixed-effects meta-regression models.

There are several parameters of interest in ameta-regressionmodel. One of these is the

model predictive power, denoted by Ρ2 (Ρ denotes the capital Greek letter ‘rho’), which

can be defined as the proportion of variance among the effect sizes that can be accounted

for by the predictors included in themodel. Note that only the variance due to differences
among the studies, quantified by τ2, can be explained by the predictors usually included in
amixed-effectsmeta-regressionmodel. An estimate of the Ρ2 parameter is usually denoted

as an R
2 value. The interpretation of R2 is identical in ordinary regression and in meta-

regression models, in terms of a percentage or proportion of the variability in the

outcomes associated with the predictor(s).
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When regression models are fitted using ordinary least squares techniques, the R
2

index is computed as the quotient between the sum of squares due to the regression and

the total sum of squares, that is, R2 ¼ SSR=SST (e.g., Pedhazur & Schmelkin, 1991).

However, this strategy is not suitable for meta-regression models because part of the total
variability, more specifically the sampling error of an observed effect size given the

population effect size in that study, cannot by definition be explained by the moderators

included in the model (Aloe, Becker & Pigott, 2010; Konstantopoulos & Hedges, 2009;

Rodriguez & Maeda, 2006).1 Thus, a different method is typically proposed for obtaining

an R
2 index in meta-regression models (Raudenbush, 1994), where the total variability is

an estimate of the between-studies variance, τ2, and the variability explained by the

predictors in themodel is estimated as a part of τ2 (see equation (3)) . Thismethodwill be

presented, explained, and illustrated in this paper.
In a meta-regression model, an adequate estimate of the magnitude of its predictive

power via the R
2 index is an essential complement of the statistical significance of the

model. TheR2 index informs us about the practical significance or the degree of influence

of a set of moderators in the heterogeneity of the effect sizes in a meta-analysis (e.g.,

explaining around 20% or 30% of the heterogeneity). However, as far as we know, no

studies have yet evaluated in a systematic manner the performance of the R2 index in the

conditions of ameta-regressionmodel. Therefore, the purpose of the present studywas to

assess the performance of the method proposed by Raudenbush to compute an R
2 index

inmeta-analysis, by conducting aMonte Carlo simulationwith different conditions usually

found in the real meta-analyses.

The outline of the present paper is as follows. First, mixed-effects meta-regression

models are briefly sketched. Second, various alternatives for computing an R
2 index

according to the proposal of Raudenbush (1994) for meta-analysis are considered. After

presenting the methods, results from previous simulation studies that pursued part of

the objectives of our study are summarized. The performance of the alternative methods

here considered is then illustrated by applying them to an example. Next, a simulation
study comparing the various estimators is presented and the results obtained are

detailed. Finally, the results are discussed and some conclusions provided, where the

degree of accuracy of the different methods for the computation of an R
2 index as a

measure of the explanatory power of a predictor is assessed as a function of the specific

conditions in a meta-analysis (e.g., number of studies, sample size distribution of the

studies, effect size distribution, and the true percentage of variance accounted for by the

predictor).

2. Mixed-effects meta-regression models

In a meta-analysis with k studies, let y denote a k 9 1 vector of independent effect sizes

{yi} that represents the results of the studies, and X a k 9 (p + 1) design matrix of full

column rank with p predictor variables, representing some differential characteristics in

the studies. Since the predictors are included as fixed effects in the model, assuming a
random-effects model for the effect sizes leads to a mixed-effects meta-regression model,

which can be expressed by the formula (Raudenbush, 1994)

1 An exception to this is whenmeta-analysing the raw data from a set of individual studies, in which case within-
study variability canbe accounted for. Formore details on so-called individual participant datameta-analyses, see,
for example, Cooper and Patall (2009).
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y ¼ Xbþ uþ e; ð1Þ

whereb is a (p + 1) 9 1vector containing the regression coefficients b0; b1; . . .; bp
� �

,u is

a k 9 1 vector of independent between-studies errors {ui} with distribution Nð0; s2resÞ,
and e is a k 9 1 vector of independent within-study errors {ei}, each with distribution

Nð0; viÞ. While vi is the within-study variance (or sampling error) for the ith study, s2res
represents the residual heterogeneity (or between-studies) variance, that is, the remaining

variability in the true effect sizes not accounted for after adding one or more predictors to

the model (Viechtbauer, 2007a).

Note that themixed-effectsmodel presented in equation (1) is actually an extension of

the random-effects model and that the latter can be formulated if X is defined as a k 9 1

vector of ones. In this case wewould have a model without predictors, where b is a scalar
containing the hypermean (mean of the population effects) and u is normally distributed

withmean 0 and variance τ2, the latter denoting the total heterogeneity in the true effects.
If, moreover, the error term uwere suppressed from equation (1), then the model would

become a fixed-effect model (which is equivalent to setting τ2 = 0 or assuming that the

sampling error is the only source of variability).

The regression coefficients b0; b1; . . .; bp
� �

can be estimated using the weighted least

squares formula

b ¼ ðX0ŴXÞ�1X0Ŵy; ð2Þ

where Ŵ is a k 9 k diagonal matrix with the inverse variances of the effect sizes as
elements, that is, f1=ðvi þ ŝ2resÞg formixed-effects models. Note that an adequate estimate

of both the within-study variance for each study, vi, and the residual between-studies

variance, s2res, is needed for the estimation of the regression coefficients. For commonly

used effect size metrics (e.g., standardized mean differences, correlation coefficients,

odds ratios, risk ratios), approximately unbiased estimators are available for vi and the

usual practice in meta-analysis is to substitute those estimates and treat them as known

values (e.g., Aloe et al., 2010; Hedges&Pigott, 2004; Knapp, Biggerstaff &Hartung, 2006;

Konstantopoulos & Hedges, 2009; Viechtbauer, 2007b; for a different approach, see
Malzahn, B€ohning&Holling, 2000). Amore crucial issue is the choice of estimator for s2res,
and at least seven different estimators have been described in the literature, as detailed in

the next section.

3. Estimating the model predictive power in meta-analysis

A proposal to compute anR2 index inmeta-analysis was presented by Raudenbush (1994,

2009). It is based on the re-estimation of the amount of heterogeneity (i.e., between-

studies variance) after adding one or more predictors to the model, resulting in the

residual heterogeneity or the heterogeneity that cannot be explained by the predictors.

The rationale for this index is that the extent to which themoderators can account for the

heterogeneity in the true effects will be reflected in the degree by which the residual

heterogeneity, s2res, will be smaller than the total amount of heterogeneity, τ2, as a result of
including explanatory variables in the model. In practice, the parameter values are
replaced by their estimates, ŝ2 and ŝ2res, allowing for the computation of the R

2 index as

(Borenstein et al., 2009)
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R2 ¼ 1� ŝ2res
ŝ2

; ð3Þ

denoting the proportion of total heterogeneity accounted for by the moderator(s)

included in the model.
Several alternatives have been proposed in the literature to estimate the total

heterogeneity variance, τ2, in random-effects models (DerSimonian & Laird, 1986; Morris,

1983; S�anchez-Meca&Mar�ın-Mart�ınez, 2008; Sidik& Jonkman, 2005b, 2007; Viechtbauer,

2005). Most of these estimators have also been extended to mixed-effects models,

allowing for estimating the residual heterogeneity variance, s2res (Raudenbush, 1994, 2009;
Sidik & Jonkman, 2005a,b). It is important to remark here that, for both parameters, no

estimator is expected to provide accurate results unless the number of studies is large

enough (e.g., Borenstein et al., 2009; Schulze, 2004).
Seven different estimators of τ2 and s2res can be computed with the formulae gathered

in Table 1. Themetafor package programmed in R (Viechtbauer, 2010) directly computes

these seven estimators from the values of the effect sizes and their corresponding within-

study variances in the studies of the meta-analysis. The Hedges (HE), Hunter–Schmidt

(HS), DerSimonian–Laird (DL), and Sidik–Jonkman (SJ) methods are non-iterative

estimators, while the maximum likelihood (ML), restricted maximum likelihood (REML),

and empirical Bayes (EB) methods require iterative computations. All estimators

presented in Table 1 can be succinctly expressed after defining the matrix

M ¼ W �WXðX0WXÞ�1X0W; ð4Þ

where W is a diagonal weighting matrix whose elements, wi, can change from one

estimator to another. For the iterative estimators, one starts with an initial estimate of s2res
(e.g., as obtained with one of the non-iterative estimators) and then iterates through the

equation

ŝ2new ¼ ŝ2old þ D ð5Þ

until convergence, where D is given in Table 1 for the ML, REML, and EB estimators.

Although all the equations gathered in Table 1 include predictors, they also apply for the

random-effects model without predictors by setting p = 0 and with X being a k 9 1

vector of ones. In a model without predictors, the equations in Table 1 estimate the total

heterogeneity variance, τ2,while the inclusionof predictors in the sameequations leads to

the estimation of the residual heterogeneity variance, s2res.
A value of zero for ŝ2res suggests that all the heterogeneity among the effect sizes is

accounted for by the predictors included in the model (Viechtbauer, 2007a). Also, due to
random sampling error, the estimators in Table 1 (with the exception of the SJ

estimator) can provide a negative estimate, which is a value outside of the parameter

space for a variance component. The usual practice is to truncate negative values to zero.

When an iterative estimator is employed, a simple strategy to avoid negative estimates is

the use of step-halving (Jennrich & Sampson, 1976), which implies multiplying the

adjustment value, D, by 1/2 (e.g., first by 1/2, then by 1/4, then by 1/8, and so on) until it

becomes sufficiently small enough for the resulting estimate to stay non-negative.

Both (total and residual) heterogeneity variance estimates employed in equation (3)
can be obtained using any of the methods presented in Table 1. As a consequence, there
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are at least seven different methods for computing the R2 index using this proposal. Aloe

et al. (2010) recommended using the samemethod for both estimates. Indeed, it does not

seem sensible to mix two estimates obtained using methods with different theoretical

assumptions and, furthermore, only the estimates obtained with the same method are
readily comparable.

It is important to note that, due to sampling error, the formula proposed by

Raudenbushmay require or lead to truncation in several situations. First, ŝ2res can be larger

than ŝ2 for a given meta-analytic data set, especially with small samples (small number of

studies, small sample sizes, or both), leading to a negative R
2 value that is typically

truncated to zero inpractice (indicating that all of the heterogeneity among the effect sizes

remains unaccounted for after including the moderator(s) in the model). Second, a

negative value of ŝ2 truncated to zero leads to division by zero in equation (3), in which
case R2 is undefined. It is then common practice to set (or truncate) the value of R2 to 0

(indicating that none of the heterogeneity is accounted for by the moderators, given that

there appeared to be none to begin with). Finally, with a positive value of ŝ2, a negative
value of ŝ2res truncated to zero will lead to an R

2 value of 1 (indicating that all of the

heterogeneity is accounted for).

Since an estimate of the heterogeneity variance is included in both the random- and

mixed-effects model weights (cf. equation (2)), the accuracy of these estimates might

affect the result of other statistical analyses, such as the computation of an overall effect
size estimate and its confidence interval in a random-effects model or the estimation and

testing of the model coefficients in a mixed-effects meta-regression model. However,

getting accurate estimates of τ2 and s2res seems evenmore crucial for the assessment of the

predictive power in meta-regression models since the R
2 index in equation (3) requires

estimates both of the total and residual amount of heterogeneity.

4. Previous simulation studies

Several simulation studies have already been conducted with the aim of comparing the

accuracy of various estimators of the heterogeneity variance in meta-analysis. Some of

these studies employed effect size indices for dichotomous measures (e.g., Malzahn

et al., 2000; Sidik & Jonkman, 2005b, 2007), while others considered indices

for continuous variables (e.g., Van den Noortgate & Onghena, 2003; Viechtbauer,

2005).
In general, a positive bias has been found in the SJ estimator for small to medium

parameter values (Sidik & Jonkman, 2005b, 2007), while a negative bias was reported

for the HS and ML estimators, as well as for the DL method when estimating large

parameter values (Malzahn et al., 2000; Viechtbauer, 2005). The HE method was found

to perform appropriately in terms of bias, although it was less efficient than the HS, DL,

ML, and REML estimators (Viechtbauer, 2005). Finally, good performance was observed

for both the REML and EB estimators when considering bias and efficiency criteria

jointly (Sidik & Jonkman, 2007; Van den Noortgate & Onghena, 2003; Viechtbauer,
2005).

All of these simulation studies focused on random-effects models. Therefore, it is not

certain to what extent these results would also carry over to mixed-effects meta-

regression models. Moreover, these studies do not indicate whether one of the various

estimators for τ2 and s2res would be preferable when computing the R
2 index given by

equation (3).

36 Jos�e Antonio L�opez-L�opez et al.



5. Objectives and hypotheses of this study

In the present study, all seven heterogeneity variance estimators presented (i.e., the HE,
HS, DL, SJ, ML, REML, and EB estimators) were considered and applied to simulated meta-

analyses where the standardized mean difference was the effect size index. This

simulation compared the accuracy of the methods under different scenarios for the

estimation of the total and residual heterogeneity variances as well as of the model

predictive power, as defined by Raudenbush (1994).

A first objectivewas to checkwhether the patterns reported in previous studies for the

heterogeneity variance estimators under random-effects models also apply for mixed-

effects modelswith one predictor. The second objectivewas to assess the performance of
Raudenbush’s proposal for estimating the model predictive power in meta-analysis when

computing R
2 with the various estimators for τ2 and s2res described earlier.

Regarding our hypotheses, we expected to find results similar to those reported in

previous simulation studies for the different estimators of the total heterogeneity

variance under random-effects models. In particular, we expected the HS and ML

estimators to show a negative bias and the DL method to provide negatively biased

estimates for large parameter values. The SJ estimator was expected to show a large

positive bias for small to medium parameter values, while the HE method was expected
to provide essentially unbiased estimates, although less efficiently than the remaining

methods under comparison. According to our hypotheses, the REML and EB estimators

were expected to provide the best performance, as found in previous simulation studies.

The same trends observed for the different estimators under random-effects models

were also expected to be found when estimating the residual heterogeneity variance

under mixed-effects meta-regression models with one moderator. Finally, it was

expected that the REML and EB estimators would also provide the best performance for

the estimation of the predictive power in mixed-effects meta-regression models,
computed with equation (3). We also expected that an increase in the average sample

size and (especially) the number of studies would lead to more precise results for all

estimators.

6. An illustrative example

Else-Quest, Hyde and Linn (2010) published a meta-analysis integrating results from the

Programme for International Student Assessment (PISA) in different countries in 2003.

This report evaluated 15-year-old students’ performance in several subjects. The authors

focused onmathematics and, since theywere interested in gender differences, effect sizes

were defined as standardized mean differences between the marks achieved by boys and

girls (with positive values indicating better performance for boys).

One of the coded characteristics for each country was the share of parliamentary seats
held by women (given as a proportion), used as a moderator in this example. Twenty

countries from different parts of the world were selected to illustrate the methods

described earlier. Table 2 shows the effect size, yi, sampling variance, vi, and the

moderator value, Parli, for each of the 20 countries.

All seven variance estimators compared in this study were employed to estimate the

total heterogeneity variance in a random-effects model, as well as the slope, the residual

heterogeneity variance, and the proportion of variance accounted for by themoderator in

a mixed-effects meta-regression model. Results are presented in Table 3.
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As the slope estimates show, a negative relationship was found with all methods,

indicating that a higher percentage of women in parliament was associated with

decreasing advantages for boys in themathematics test. Regarding the total heterogeneity

variance, the lowest estimates were obtained using HS and DL methods (0.0052 and

0.0058, respectively), while the highest estimates were provided by HE, SJ, and EB

methods (0.0077, 0.0076, 0.0075, respectively). Residual heterogeneity variance

estimates also showed some variability, with values ranging between 0.0046 (HS

estimator) and 0.0061, obtained with the HE and SJ estimators. These differences led to
notable variation among the estimates of the model predictive power depending on the

estimator used. The R2 values showed fluctuations from 6.9% of heterogeneity accounted

for by the moderator (DL estimator) to the 25.4% obtained with the ML estimator.

7. Simulation study

A simulation study was programmed in R using the metafor (Viechtbauer, 2010) package.

Meta-analyses of k studies were generated, obtaining the individual scores for each study

from two normal populations (see Mar�ın-Mart�ınez & S�anchez-Meca, 2010) and using the

standardized mean difference as the effect size index (Mar�ın-Mart�ınez & S�anchez-Meca,

2010; equation 2).

For each meta-analysis, h and x were defined as k 9 1 vectors containing parameter

effects andmoderator values, respectively. Thepredictorxwas generated froma standard

normal distribution. On the other hand, the h values were obtained from the expression
h = b0 + b1x + u, where b0 was set to 0.5, which can be regarded as an effect of medium

Table 3. Estimates in random- and mixed-effects models using data from Else-Quest et al. (2010)

Method ŝ2 b̂1 ŝ2res R
2

HE 0.0077 �0.3870 0.0061 .2120

HS 0.0052 �0.3849 0.0046 .1207

DL 0.0058 �0.3861 0.0054 .0691

SJ 0.0076 �0.3870 0.0061 .1891

ML 0.0069 �0.3858 0.0051 .2544

REML 0.0073 �0.3867 0.0058 .2060

EB 0.0075 –0.3868 0.0059 .2093

Table 2. Data from the meta-analysis published by Else-Quest et al. (2010)

Country yi vi Parli Country yi vi Parli

Australia 0.06 0.0003 0.27 Mexico 0.13 0.0001 0.16

Belgium 0.07 0.0005 0.25 Netherlands 0.06 0.0010 0.33

Brazil 0.16 0.0009 0.09 Poland 0.06 0.0009 0.21

Canada 0.13 0.0002 0.24 South Korea 0.25 0.0008 0.06

France 0.09 0.0009 0.12 Spain 0.10 0.0004 0.27

Germany 0.09 0.0009 0.31 Sweden 0.07 0.0009 0.45

Greece 0.21 0.0009 0.09 Thailand �0.05 0.0008 0.10

Iceland �0.17 0.0012 0.35 Tunisia 0.15 0.0008 0.12

Italy 0.19 0.0003 0.10 Turkey 0.14 0.0008 0.04

Japan 0.08 0.0009 0.10 USA 0.07 0.0007 0.14
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size in some psychological areas (Cohen, 1988); the slope b1 was set as described below,

and u is an error term with distribution Nð0; s2resÞ. Note that if the predictor is dropped

from the model, the error term u will have distribution N(0, τ2).
The total heterogeneity variance, τ2, and the model predictive power, Ρ2, were

manipulated in the simulations. The former was set to values representative of no, low,

medium, or large amounts of heterogeneity in psychology and related fields (0, 0.08, 0.16,

and 0.32, respectively), similar to the values employed inprevious simulation studies (e.g.,

Knapp & Hartung, 2003; Mar�ın-Mart�ınez & S�anchez-Meca, 2010; Schulze, 2004). For Ρ2,
we used values of 0%, 25%, 50%, or 75% of heterogeneity accounted for, with the aim of

reflecting realistic conditions (Thompson & Higgins, 2002). After setting both parameter

values, we then assigned a value to b1 by means of the expression b21 ¼ s2P2. Table 4

gathers the different values considered for these parameters, aswell as the resulting values
for b21 and the residual heterogeneity variance parameter, s2res, which we computed as

s2res ¼ s2 � b21.
2

Other factors manipulated in this simulation were the number of studies in eachmeta-

analysis (k = 5, 10, 20, 40, and 80) and the average sample size of the k studies ( �N ¼ 30,

50, 100, 150, and 200). Note that, for the ith study,Ni = niE + niC,withniE = niC. Vectors

of individual sample sizes were generated with an skewness of +1.546, as reported by

S�anchez-Meca andMar�ın-Mart�ınez (1998, p. 317) in a review of meta-analytic syntheses in

psychology. A total of 13 9 5 9 5 = 325 conditions were examined. For each condition,
10,000 meta-analyses were simulated, and ŝ2, ŝ2res, and R

2 were computed with the seven

alternatives above presented for each simulated data set.

The performance of the estimators for s2, s2res and Ρ2 was compared using several

criteria. Let ĥji be an estimate of one of the parameters of interest obtained with any of the

proposed methods in a particular condition. The bias for that estimate and condition was

estimated as (Mar�ın-Mart�ınez & S�anchez-Meca, 2010)

bias ĥ
j

� �
¼

P
i ĥ

j
i

10; 000
� h; ð6Þ

where h is the value of the parameter of interest (see Table 4). The percentage of bias, or
relative bias, was then obtained as

%bias ĥ
j

� �
¼

bias ĥ
j

� �

h
� 100: ð7Þ

Moreover, the MSE was estimated as

MSE ĥ
j

� �
¼

P
i ĥji � h
� �2

10; 000
: ð8Þ

Finally, as described earlier, the computation of the R
2 value may require truncation in

various cases. When τ2 and s2res are both actually positive (in which case 0 < P2 < 1), a

2 From hi = b1Xi + ui, the total amount of heterogeneity in the true effect sizes, τ2, can easily be computedwith
s2 ¼ b21V ðXiÞ þ s2res ¼ b21 þ s2res, as Xi and ui are independent and normally distributed with mean zero
and variances 1 and s2res, respectively. This leads to the expression s2res ¼ s2 � b21.
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large rate of truncated R
2 values would reflect undesirable performance of equation (3).

Therefore, the proportion of R2 values truncated to 0 or 1 was also examined for the

different estimators along the simulated scenarios.

8. Results

Due to limitations of space, only part of the results will be presented in this section. The

full set of results is available from the corresponding author upon request.

8.1. Total heterogeneity variance

Because any negative estimates of τ2 were truncated to zero, all estimators showed the

expected positive bias under the homogeneous scenario (τ2 = 0). On the other hand, for

the conditions with τ2 > 0, Table 5 shows the percentage of bias for the total
heterogeneity variance estimates provided by each method when setting the number of

studies and the averagewithin-study sample size to values that can often be found inmeta-

analytic reviews in several psychological fields (i.e., k = 20 and �N ¼ 50).

The HS and ML estimators provided the most negatively biased estimates, with a

deviation of around 16% from the parameter value. The SJ estimator showed the most

(positively) biased results, although its performance improved as τ2 increased. TheDL and
REML estimators performed similarly for small tomedium amounts of heterogeneity, with

a negative bias slightly over 5%, while the DL estimator yielded more biased results for
large values of τ2. TheHEestimator showed the best results in terms of bias,with apositive

deviation smaller than 3% and better results as the parameter value increased. Finally, the

EB estimator performed reasonably well in terms of bias, with a negative deviation from

the parameter value around 2%. With smaller values of k, all estimators showed a larger

bias. Conversely, the estimates obtained with 40 and 80 studies were more accurate than

withk = 20 for the differentmethods. Finally, higher average sample sizes also led tomore

accurate results for all estimators.

When comparing the estimators in terms of their relative efficiency, the SJ and HE
methods provided the largest MSE values, while the HS and ML estimators showed the

Table 4. Parameter values considered in this simulation for τ2 andΡ2 (and the resulting values forb21
and s2res)

τ2 0 0.08 0.16 0.32

Ρ2 0 0 0.25 0.50 0.75 0 0.25 0.50 0.75 0 0.25 0.50 0.75

b21 0 0 0.02 0.04 0.06 0 0.04 0.08 0.12 0 0.08 0.16 0.24

s2res 0 0.08 0.06 0.04 0.02 0.16 0.12 0.08 0.04 0.32 0.24 0.16 0.08

Table 5. Percentage of bias for the total heterogeneity variance estimators with k = 20 and �N ¼ 50

τ2 HE HS DL SJ ML REML EB

0.08 2.81 �17.33 �6.23 45.19 �17.92 �6.96 �1.82

0.16 1.05 �16.03 �7.49 16.96 �14.27 �6.01 �2.36

0.32 0.47 �16.83 �9.83 4.69 �11.93 �5.25 �2.36
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most efficient performance. The remaining estimators (DL, REML, and EB) performed

similarly as k increased. All methods yieldedmore accurate estimates with a larger k, with

MSE values clearly decreasing with 20 or more studies, and an increase in the average

sample size per study also led to better results.

8.2. Residual heterogeneity variance

Trends for the different methods when estimating the residual heterogeneity variance

were very similar to those detailed for τ2. Regarding bias, the SJ estimator again showed

the most biased results – the positive bias was now larger than for τ2 – unless the

parameter value was large enough (s2res ¼ 0:24 and s2res ¼ 0:32). Moreover, HS and ML

methods provided again negatively biased estimates, with a deviation from the parameter
value around 25% with 20 studies, larger than that observed for τ2. Finally, the HE, DL,

REML, and EB estimators performed similarly as for τ2.
Figure 1 shows the MSE results for the estimators as a function of k and �N . The HS and

MLmethods performed very similarly, so their results are presented jointly, as are those for

the REML and EB estimators. As found in the results for τ2, the number of studies showed

the largest influence on the efficiency of all estimators of s2res and theMSE values especially

decreasedwhen going from5 to 10 and from10 to 20 studies. The average sample size also

showed some influence on the efficiency of the estimates, with smaller MSE values
obtained as �N increased. The SJ and HE estimators showed the largest MSE values, while

the HS andMLmethods provided themost efficient estimates. All estimators except the SJ

method performed similarly with k = 80.

8.3. Model predictive power

TheR2 values obtainedwith all estimatorswere quite variable, but the estimates tended to

fall closer to the parameter value as k, �N , τ2, and P2 increased. As an illustration, Table 6
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Figure 1. MSE for the residual heterogeneity variance estimators.
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presents the correlations between the estimates obtained with the different methods

under two opposite scenarios. Figures below the main diagonal are correlations under

adverse conditions (k ¼ 5; �N ¼ 50; s2 ¼ 0:16, and P2 = 0.25), while those above themain

diagonal are correlations obtained under an optimal scenario (k ¼ 80; �N ¼ 100; s2 ¼ 0:32,
and P2 = 0.50).

Under adverse conditions, the highest correlationswere found between theDL, REML,

andEB estimators,with values over .95,whilemost of the remaining combinations yielded

values below .90 and even below .60 (e.g., the correlation between the HS and SJ

estimators). Conversely, all estimators performed very similarly under the optimal

scenario, with all correlations falling above .96. Table 6 shows, therefore, that the

differences between estimators are especially important under the most adverse

conditions, while performance for all methods tends to convergence for the optimal
scenarios.

Among the different factors manipulated in this simulation, the accuracy of the P2

estimates was mostly influenced by k. This finding is illustrated in Figure 2 using the EB

estimator, which provided slightly more accurate results than the other methods, and

considering scenarios with P2 = 0.25.

The boxplots in Figure 2 reveal substantial variability in the P2 estimates, especially

for small values of k (e.g., less than 20 studies), represented on the X-axis of each chart.

The picture is worrying for a typical meta-regression, as it reveals that no value between
0 and 1 (including a truncated estimate) is unlikely unless k is large enough (40 or more

studies), especially with small to medium sample sizes ( �N ¼ 50) for the individual

studies. Results with 5 studies, which are not shown in this figure, were very unstable,

showing even more variability than with k = 10. Moreover, an increase in the average

sample size per study led to more precise estimates (as can be seen when looking at

Figure 1(b)), while increasing the heterogeneity variance parameter, represented

with different bar shades, led to a smaller rate of truncation of the R
2 values to zero and

one.
Several descriptives were computed for the R

2 values obtained with the different

estimators, considering conditions with k = 40 and setting the other factors to realistic

values for a meta-regression with one covariate ( �N ¼ 50; s2 ¼ 0:16, and P2 = 0.25).

Table 7 gathers themean, themedian, the 2.5 and 97.5 percentiles, and the rates of values

truncated to zero and one for each estimator.

Regarding the comparison of the different estimators in terms of bias, the HE, DL,

REML, and EB estimators performed appropriately, with their mean estimates deviating

less than 0.01 from the parameter value (P2 = 0.25). In contrast, the HS andML estimators

Table 6. Correlations between the R
2 values obtained with the different methods, for adverse

conditions (lower triangle) and the optimal scenario (upper triangle)

HE HS DL SJ ML REML EB

HE .9727 .9731 .9934 .9958 .9960 .9991

HS .7070 .9999 .9692 .9869 .9865 .9803

DL .9368 .7201 .9701 .9871 .9868 .9807

SJ .8227 .5720 .8196 .9907 .9915 .9935

ML .7627 .8395 .7677 .5943 .9999 .9988

REML .9322 .6796 .9516 .8221 .7591 .9989

EB .9678 .6991 .9772 .8314 .7725 .9626
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showed a positive bias, while the mean estimate for the SJ estimator showed a large

negative bias.3

In addition to the bias that was found for the HS, ML, and SJ estimators, the remaining

methods showed some problems as well. When examining the percentiles presented in

Table 7, it can be seen that therewas awide variation among the individual estimates, and

that 95% of the central values ranged from 0 to 0.65. Moreover, a non-negligible

proportion of the estimates (over 5%) were truncated to zero, especially for the DL and

REML estimators. While the rates of truncation to zero were clearly lower for the HS and

ML estimators, the bias showed by these two methods advises against their use. Finally,

despite the parameter value of P2 = 0.25, theHE,DL, REML, and EBmethods still provided
some estimates that were truncated to one. On the other hand, since the SJ estimator

always yields a positive value, R2 can never reach 1 when using this estimator and hence

never required truncation at the upper end of the scale, although in turn it provided the

largest bias.

Table 8 presents the MSE results with k = 40 and P2 = 0.25 for the different

estimators. Only conditions with some heterogeneity among the parameter effects

(τ2 > 0) were considered here.
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Figure 2. R2 values using the EB estimator with P2 = 0.25.

3 Since the negative bias for theHS andML estimators and the positive bias for the SJ estimator tended to be larger
for s2res than for τ2, the bias for these three methods was reversed when estimating P2.
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All methods performed more efficiently as �N and τ2 increased. When comparing the

different methods, the ML and HS estimators provided the largest MSE values unless the

average sample size per study was 150 or 200 participants, while the SJ estimator was the

most efficient method, especially under the most adverse conditions. Regarding the

influence of k, weak performance was reported before for the method proposed by

Raudenbush (1994) with a small number of studies (see Figure 2 and Table 7). With

k = 20, trends were already similar to those shown in Table 8, although the MSE values

were twice as large as for k = 40. With k = 80, MSEs were on average smaller than 0.04
under all of the conditions examined here, although trends for the different estimators

remained the same.

9. Discussion

In this study, the performance of sevenmethods for the estimation of the total and residual
heterogeneity variances, as well as the model predictive power, was assessed under a

variety of realistic scenarios in applied research. The estimators here compared showed

different performance, especially under adverse and intermediate conditions, while all

Table 8. MSE values for the P2 estimators with k = 40 and P2 = 0.25

Estimator HE HS DL SJ ML REML EB

�N ¼ 30 τ2 = 0.08 .0932 .1227 .0997 .0395 .1495 .1187 .1043

τ2 = 0.16 .0678 .0807 .0667 .0306 .0984 .0776 .0662

τ2 = 0.32 .0377 .0417 .0390 .0234 .0482 .0415 .0363
�N ¼ 50 τ2 = 0.08 .0641 .0758 .0625 .0292 .0872 .0696 .0634

τ2 = 0.16 .0322 .0345 .0323 .0218 .0373 .0335 .0317

τ2 = 0.32 .0218 .0225 .0231 .0174 .0231 .0228 .0220
�N ¼ 100 τ2 = 0.08 .0285 .0300 .0285 .0206 .0312 .0292 .0285

τ2 = 0.16 .0202 .0197 .0202 .0165 .0202 .0204 .0203

τ2 = 0.32 .0172 .0161 .0171 .0149 .0168 .0173 .0172
�N ¼ 150 τ2 = 0.08 .0230 .0228 .0229 .0182 .0234 .0232 .0231

τ2 = 0.16 .0179 .0168 .0176 .0153 .0175 .0180 .0179

τ2 = 0.32 .0164 .0148 .0159 .0146 .0159 .0165 .0164
�N ¼ 200 τ2 = 0.08 .0199 .0193 .0197 .0165 .0197 .0200 .0199

τ2 = 0.16 .0175 .0164 .0171 .0151 .0171 .0176 .0175

τ2 = 0.32 .0159 .0142 .0153 .0145 .0153 .0159 .0159

Table 7. R2 values with k = 40, �N ¼ 50, τ2 = 0.16, and P2 = 0.25

Estimator HE HS DL SJ ML REML EB

Mean .2534 .2950 .2488 .1464 .3052 .2588 .2555

P2.5 0 .0157 0 0 .0166 0 0

Median .2311 .2752 .2281 .1332 .2843 .2390 .2351

P97.5 .6512 .6974 .6458 .3734 .7379 .6781 .6547

Pr (R2 = 0) .0585 .0003 .0689 .0570 .0062 .0630 .0565

Pr(R2 = 1) .0021 .0029 .0017 0 .0011 .0010 .0015

Notes. P2.5 and P97.5 are 2.5 and 97.5 percentiles, respectively. Pr R2 ¼ i
� �

is the rate of values

truncated to i, for i = 0, 1.
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methodsprovided similar and accurate estimates of the parameters of interest for themost

favourable conditions (e.g., large number of studies and large number of participants per

study).

Regarding the results for the total heterogeneity variance, the patterns found in this
simulation are comparable to the ones reported by Viechtbauer (2005). The DL, REML,

and EB estimators performed reasonably well in terms of bias and efficiency, although the

DLmethod yielded negatively biased estimates for large parameter values, as was found in

previous simulations (Malzahn et al., 2000; Sidik & Jonkman, 2005b, 2007; Viechtbauer,

2005). The HE estimator showed essentially unbiased results (the slight positive bias

observed in Table 5 can be regarded as a consequence of truncating the negative

estimates to zero) but large MSE values, while the HS and ML methods performed very

efficiently but with a negative bias. Finally, the SJ method showed a large positive bias for
small parameter values, as has been previously described (Sidik & Jonkman, 2005b), and

the largest MSE values. The performance of the various estimators remained very similar

after the inclusion of a moderator.

Regarding the estimation of the predictive power in meta-regression models with one

predictor, no estimator performed accurately with less than 40 studies. Again, the HS, ML,

and SJ estimators yielded the most biased estimates. The remaining estimators performed

more precisely, although their estimates still showedwide variation evenwith amoderate

to largek, including truncated values to zero and one, as shown inTable 7.Given the large
MSE of the SJ estimator for τ2 and s2res, the SJ estimator showed surprisingly efficient

performance for estimating P2, while the HS and ML methods now provided the largest

MSE values.

Out of the different factors manipulated in this simulation, our results suggest that the

number of studies exerts an important influence on the accuracy of the results, and that

precise estimates of the heterogeneity variances and themodel predictive power can only

be expected with at least 20 and 40 studies, respectively. An increase in the average

sample size also improved the results for all estimators. The critical influence of k on the
accuracy of the heterogeneity variance estimators has already been discussed by several

authors both in the context of random-effects models (e.g., Borenstein et al., 2009;

Schulze, 2004) and mixed-effects models (Thompson & Higgins, 2002). The fact that

results weremore accurate as k and �N increased is in agreementwith large-sample theory,

which underlies the statistical models and methods in meta-analysis (Hedges, 2009).

Moreover, as shown in Figure 2 and Table 8, the P2 estimators performedmore efficiently

as the total heterogeneity variance increased. An explanation of this fact is that, when

estimating τ2, a small parameter valuewill leadmore often to negative estimates requiring
truncation, and this will also lead to truncated R

2 values.

10. Conclusion

When ameta-analysis is carried out, some variability is usually found among the effect sizes

from the individual studies. The part of that variability due to systematic differences
among studies can be quantified by estimating the heterogeneity (or between-studies)

variance, τ2. Moreover, if the results from the studies are not homogeneous, the meta-

analystmay be interested in the identification of one ormore study characteristics that can

explain part of the variability among the results. This goal can be addressed throughmeta-

regression analyses, which are typically conducted under a mixed-effects model. Two

parameters of interest in a mixed-effects meta-regression model are the residual
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heterogeneity variance after including one or more moderators, s2res, and the predictive

power of the moderator(s) included in the model, P2.

In the present simulation study, we found a different performance for the seven

estimation methods available both for τ2 and s2res in the set of simulated conditions. For a
small number of studies (k < 20) no estimator performed accurately.When the number of

studies was moderate (20–40 studies), the REML and EB methods yielded the most

accurate results when considering bias and efficiency criteria jointly. Finally, with 80

studies, all methods converged and showed similar (and accurate) results. Increasing the

average sample size per study also led tomore accurate results. These results are of interest

not only for the accurate estimation of the heterogeneity variances, but also for the

computation of an R
2 index in meta-analysis, which can be obtained by comparing the ŝ2

and ŝ2res values (Raudenbush, 1994).
The results obtained in this simulation study suggest that about 40 studies are

required to get accurate estimates of P2 in mixed-effects meta-regression models, so that

a cautious interpretation of R2 values should be advised for meta-regression models

fitted with a smaller number of studies (Thompson, 1994). Among the different

estimators here compared, the REML, DL, and EB methods showed the most accurate

results across the different scenarios and criteria considered. Although the present

study focused on standardized mean differences, it is likely that our findings can be

generalized to meta-analyses with other effect size measures that are (at least
approximately) normally distributed. However, conclusions from this simulation are

restricted to the scenarios considered here, so that further simulation studies are

needed in order to account for conditions different from the ones included in the

present study.
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