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Choice of the appropriate model in meta-analysis is often treated as an empirical
question which is answered by examining the amount of variability in the effect sizes.
When all of the observed variability in the effect sizes can be accounted for based on
sampling error alone, a set of effect sizes is said to be homogeneous and a fixed-effects
model is typically adopted. Whether a set of effect sizes is homogeneous or not is
usually tested with the so-called Q test. In this paper, a variety of alternative
homogeneity tests – the likelihood ratio, Wald and score tests – are compared with the
Q test in terms of their Type I error rate and power for four different effect size
measures. Monte Carlo simulations show that the Q test kept the tightest control of the
Type I error rate, although the results emphasize the importance of large sample sizes
within the set of studies. The results also suggest under what conditions the power of
the tests can be considered adequate.

1. Introduction

A fundamental issue in meta-analysis is the selection of the proper model underlying a

set of effect sizes. Among the most common meta-analytic models adopted are the fixed-

effects and the random-effects models (Hardy & Thompson, 1998; Hedges & Vevea,

1998; Hunter & Schmidt, 2000; Normand, 1999). These two models not only require a
completely different conceptualization of the effect size estimates, but also can lead to

very different conclusions about the presence of so-calledmoderator variables, that is,

independent variables that influence the magnitude of the effect sizes.

Choice of the appropriate model is often treated as an empirical question which is

answered by examining the amount of variability in the effect sizes. Each effect size

estimate is subject to sampling error, and we can typically obtain an unbiased estimate of

the amount of variance in a single effect size based on sampling error. This in turn allows

us to estimate the population heterogeneity, meaning the amount of variability in the
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observed effect sizes over and beyond that which we would expect based on sampling

error alone (Friedman, 2000; Thompson & Sharp, 1999; Viechtbauer, 2005). If the

amount of population heterogeneity is sufficiently large, then we can no longer assume

that the observed effect sizes are estimates of one and the same population effect. In

other words, the population effect sizes cannot be assumed to be homogeneous. In that

case, we can hypothesize that (a) an additional source of random variability besides
sampling error is influencing the effect sizes, (b) moderator variables are introducing

additional variability into the effect sizes, or (c) these two processes are operating in

combination (Lipsey & Wilson, 2001).

Whether a set of effect sizes is homogeneous or not can be tested with a variety of

homogeneity tests. The purpose of the present paper is to contrast such homogeneity

tests in terms of their Type I error rate and power. The so-called Q test is the most

commonly used test for examining the hypothesis of population homogeneity. However,

it has been criticized for not having enough power to detect heterogeneity when sample
sizes are small (Hunter & Schmidt, 2000; Sánchez-Meca & Marı́n-Martı́nez, 1997). Some

alternatives to the Q test are the likelihood ratio, Wald test and score test. However,

these other hypothesis tests have received little or no attention in the context of meta-

analysis and it is generally unknown whether they are viable alternatives to the Q test.

Moreover, the various tests can yield conflicting results and it is therefore of interest to

determine whether one test should be preferred over the others.

The alternative tests can be based on either maximum likelihood (ML) or restricted

maximum likelihood (REML) estimation, and both approaches were explored. Since an
iterative algorithm must be employed to obtain the ML and REML estimates, the Type I

error rate and power of the tests were compared numerically in a set of Monte Carlo

simulations involving four different effect size measures: the unstandardized mean

difference (UMD), the standardized mean difference (SMD), the correlation coefficient,

and the correlation coefficient after applying Fisher’s variance-stabilizing transformation.

The outline of this article is as follows. In Section 2, I will briefly define the fixed- and

random-effects models in meta-analysis and show that these two models are

distinguished by a single variance component that is equal to zero for the fixed-effects
model and greater than zero for the random-effects model. Therefore, testing the

homogeneity of effect sizes is a matter of testing whether this variance component is

zero or not. I will outline in Section 3 the essential characteristics of the general linear

mixed-effects model (GLMM) and then show in Section 4 that the meta-analytic fixed-

and random-effects models are just special cases of the GLMM. Parameter estimation via

ML and REML is discussed in this section as well. In Section 5, I introduce the various

homogeneity tests and discuss some of their properties. Two examples are provided in

Section 6 that illustrate the use of the various tests and demonstrate that the agreement
between the tests is less than perfect. The results from the Monte Carlo simulations are

provided in Section 7. A few general comments then conclude the paper.

2. Meta-analytic models

2.1. Fixed-effects model
Before discussing the homogeneity tests, it is useful to explicitly outline the models

under consideration. Suppose we derive from a set of k studies k effect size estimates,

ES1, : : : ,ESk, which describe the relationship between two variables that are of

interest. The two variables might be measured on a continuous scale, which would
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suggest the use of the correlation coefficient in its raw or variance-stabilized version as a

natural effect size index (Rosenthal, 1994). Alternatively, if one variable indicates group

membership and the other is some continuous outcome measure on which the groups

are being compared, then the SMD is commonly chosen as the measure of effect size

(Rosenthal, 1994). Finally, effect size measures for dichotomous dependent variables,

often encountered in the medical field, include the risk difference, risk ratio and odds
ratio (Fleiss, 1994). Regardless of the specific effect size index used for the k studies, ESi
describes the observed strength of the relationship between the two variables in the ith

study. For the remainder of this paper, I will assume that each of the k studies provides a

single independent effect size estimate.

The most basic meta-analytic model is the fixed-effects model given by

ESi ¼ uþ 1i; ð1Þ
where the effect size estimate of study i is decomposed into u, the fixed population effect

size for all k studies, and 1i, a random error term by which estimate ESi deviates from the

true population effect size. The sampling error 1i of the ith study is assumed to be

normally distributed with mean 0 and variance s 2
1i
, from which it follows that

ESi , Nðu;s 2
1i
Þ: ð2Þ

Note that, in contrast to the typical assumption of homoscedasticity in linear regression

and analysis of variance models, we do not assume that the sampling variances are

homogeneous for all k effect size estimates. The sampling variance of an effect size

measure depends inversely on the sample size of the study from which it was derived
(the within-study sample size) and possibly some other parameters. Therefore, holding

everything else constant, larger within-study sample sizes yield smaller values of s 2
1i
and

consequently provide more precise estimates of u. Because sample sizes are typically not

homogeneous across studies, heteroscedasticity is to be expected in meta-analysis.

2.2. Random-effects model
Now suppose that the population effect sizes are heterogeneous for the set of studies as
a result of random variability in the population effects. A common way to model the

heterogeneity in the population effect sizes is to conceptualize the decomposition of the

effect size estimates as a two-stage hierarchical process. First, the population effect size

for the ith study is given by

ui ¼ mu þ ti; ð3Þ
where ti is the amount by which ui differs from the average population effect mu. In the

second stage, the observed effect size is decomposed into the study-specific population

effect and a sampling error component by which ESi differs from ui:

ESi ¼ ui þ 1i: ð4Þ
Combining these two equations yields the random-effects model, given by

ESi ¼ mu þ ti þ 1i: ð5Þ
The typical assumptions for this model are as follows: (a) 1i , Nð0;s 2

1i
Þ;

(b) ti
iid,Nð0;s 2

uÞ; (c) Cov½1i; 1i0 � ¼ 0 for all i – i0, and (d) Cov½ti; 1i0 � ¼ 0 for all i and

i0. Therefore, we assume independent and normally distributed sampling errors with

heteroscedastic sampling variances and normally distributed variability among the

population effect sizes that is independent of the sampling errors.
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One way to conceptualize the population effect sizes is to think of them as

realizations of a random variable with expectation mu and variance s 2
u. Since ESi is a

linear combination of independent normally distributed random variables, it

follows that

ESi , Nðmu;s
2
u þ s 2

1i
Þ: ð6Þ

In the random-effects model, the observed effect size from the ith study is an estimate of

the average effect size in the population, as opposed to the fixed-effects model, where

ESi estimates a fixed population effect.

Note that the fixed-effects model is just a special case of the random-effects model

where ui ¼ u for i ¼ 1, : : : , k, or equivalently, s 2
u ¼ 0. In other words, in the absence of

population heterogeneity, the random-effects model reduces to the fixed-effects model.

Therefore, choice of the appropriate model is a question of whether

s 2
u ¼ 0 or s 2

u . 0.

3. General linear mixed-effects model

The fixed- and random-effects models discussed above are actually just special cases of

the general linear mixed-effects model. GLMMs are of the general form

y ¼ Xbþ Zgþ e;

where y is a (k £ 1) vector of random variables, X is a (k £ p) design matrix of

known constants for the (p £ 1) fixed-effects parameter vector b, Z is the (k £ q)

design matrix for the (q £ 1) random-effects vector g, and e is a (k £ 1) vector of

random error terms (Searle, Casella, & McCulloch, 1992). We assume E[g] ¼ 0,
E[e ] ¼ 0, and Cov[g, e ] ¼ 0. Define D as the (q £ q) covariance matrix of the
random effects in g and R as the (k £ k) covariance matrix of e. Then V, the (k £ k)

covariance matrix of y, is equal to ZDZ0 þ R. Typically, we impose some structure on

the k(k þ 1)/2 parameters of V such that its elements are a function of m

unobservable parameters, which we collectively denote by the vector

f ¼ (f1, : : : ,fm), where m is typically substantially smaller than k(k þ 1)/2. The

parameter space is given by {b,f: b [ Rp, f [ V}, where V is a subset of

Euclidean m space such that V is non-singular. The parameters in f are usually

estimated by ML or REML (Harville, 1977), which requires additional distributional
assumptions. Typically, we assume that g , N(0,D) and e , N(0,R), and

consequently y , N(Xb,V ).

4. Meta-analytic models in the GLMM framework

The meta-analytic random-effects model will now be put in the GLMM framework.

The vector y consists of the k independent effect size estimates. The design matrix X
is composed of a single column of 1s, corresponding to mu, which is the only

parameter in b. Moreover, Z is the (k £ k) identity matrix, g is comprised of the ti -
values at the population level, and e includes the random error terms, 11, : : : ,1k.
Then V is diagonal with vi ¼ ðs 2

u þ s 2
1i
Þ and y , N(mu1,V ), where 1 denotes a

(k £ 1) vector of 1s. The model can be written out explicitly in matrix form as

follows:
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ES1

ES2

..

.

ESk

26666664

37777775 ¼

1

1

..

.

1

2666664

3777775½mu� þ

1 0 : : : 0

0 1 : : : 0

. .
.

0 0 : : : 1

2666664

3777775
t1

t2

..

.

tk

26666664

37777775þ

11

12

..

.

1k

26666664

37777775:

A problem with this model is the large number of parameters. Specifically, there are

k þ 1 variance components in f ¼ ðs 2
u;s

2
11
; : : : ;s 2

1k
Þ and one fixed-effects parameter

in b (i.e. mu), but only k effect size estimates in y. Therefore, estimating all parameters

simultaneously, for example via ML estimation, becomes problematic due to model

identifiability. This situation is related to the Neyman–Scott problem (Neyman & Scott,

1948), where a so-called incidental parameter is added to the model for each additional

observation, leading to an inconsistent system of estimators.

To circumvent this difficulty, the common practice in meta-analysis is to estimate the

parameters in two stages. First, estimates of s 2
1i
are obtained algebraically based on the

sampling theory underlying a particular effect size measure. Treating these estimates as

known (i.e. ignoring their sampling variability) leaves only two parameters to be

estimated, namely mu and s 2
u, which yields an identifiable model. ML and REML

estimation can then be applied in the usual manner, as will now be discussed.

4.1. Maximum likelihood estimation
If we treat the sampling variances as known, then the log-likelihood function of mu and

s 2
u is given by

ln Lðmu;s
2
uÞ ¼ 2

1

2

Xk
i¼1

lnðs 2
u þ s 2

1i
Þ2 1

2

Xk
i¼1

ðESi 2 muÞ2
s 2

u þ s 2
1i

; ð7Þ

leaving out the additive constant. The likelihood equations are obtained by setting the

partial derivatives with respect to mu and s 2
u equal to zero and solving for the two

parameters to be estimated. Doing so yields

m̂
ðMLÞ
u ¼

Pk
i¼1wiESiPk
i¼1wi

ð8Þ

and

ŝ
2ðMLÞ
u ¼

Pk
i¼1w

2
i ESi 2 m̂

ðMLÞ
u

� �2

2s 2
1i

� �
Pk

i¼1w
2
i

; ð9Þ

with wi ¼ 1=ðs 2
u þ s 2

1i
Þ:

Since m̂
ðMLÞ
u depends on ŝ

2ðMLÞ
u and vice versa, an iterative approach must be used to

obtain solutions to these equations. Typically, one starts out with an initial guess for

ŝ
2ðMLÞ
u and then iterates between (8) and (9) until convergence (Brockwell & Gordon,

2001; Erez, Bloom, & Wells, 1996; National Research Council, 1992). Usually, only a few

iterations are necessary for the solution to stabilize. It can be shown that this approach is
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identical to applying the Fisher scoring algorithm to this estimation problem

(Viechtbauer, 2004).

4.2. Restricted maximum likelihood estimation
Viechtbauer (2005) showed that the maximum likelihood estimator (MLE) of s 2

u is

negatively biased. In fact, it is generally known that MLEs of variance components in the

GLMM are negatively biased (Corbeil & Searle, 1976a; Patterson & Thompson, 1971,

1974). REML estimation (Corbeil & Searle, 1976b; Harville, 1977; Patterson &
Thompson, 1971, 1974) is known to reduce, or in this case essentially removes, the bias

in the variance component estimate (Viechtbauer, 2005). The restricted log-likelihood

function for the random-effects model is given by

ln LRðs 2
uÞ ¼ 2

1

2

Xk
i¼1

lnðs 2
u þ s 2

1i
Þ2 1

2
ln
Xk
i¼1

1

s 2
u þ s 2

1i

2
1

2

Xk
i¼1

ðESi 2 m̂
ðMLÞ
u Þ2

s 2
u þ s 2

1i

; ð10Þ

leaving out additive constants. Setting the derivative with respect to s 2
u equal to zero

and solving leads to the REML estimator of s 2
u, which is given by

ŝ
2ðREMLÞ
u ¼

Pk
i¼1w

2
1 ESi 2 m̂

ðMLÞ
u

� �2

2s 2
1i

� �
Pk

i¼1w
2
i

þ 1Pk
i¼1wi

; ð11Þ

with wi defined as before. The same iterative scheme as described for the MLE can be

employed to obtain a solution for (11).

An approximation to the REML estimator frequently found in the literature

(e.g. Berkey, Hoaglin, Mosteller, & Colditz, 1995; Normand, 1999; Thompson & Sharp,

1999) is given by

ŝ
2ðREMLÞ
u <

Pk
i¼1w

2
1 kðk2 1Þ21

ESi 2 m̂
ðMLÞ
u

� �2

2s 2
1i

� �
Pk

i¼1w
2
i

: ð12Þ

It appears that (12) originated with C. N. Morris (1983), who suggested it as an
‘approximate’ REML estimator (p. 53). While (12) and the exact REML estimator are

equal to each other when the sampling variances are homogeneous – that is s 2
1i
¼

s 2
1; i ¼ 1; : : : ; k (Viechtbauer, 2004)— this is rare in practice and therefore (11) should

be preferred.

4.3. Other population heterogeneity estimators
Several other estimators for s 2

u have been suggested in the literature. Viechtbauer

(2005) examined and contrasted a total of five different estimators for s 2
u analytically

and via Monte Carlo simulations. The five estimators examined included one suggested

by Hunter and Schmidt (1990) from the validity generalization literature, one proposed
by Hedges (1983, 1989), an estimator by DerSimonian and Laird (1986), the MLE, and

the REML estimator. The MLE was found to be negatively biased as expected, while the

REML estimator was essentially bias-free. On the other hand, the MLE was more efficient

and had lower mean-squared error (MSE), in particular when k was small. The Hunter

and Schmidt (HS) estimator was found to have similar properties to the MLE, while the
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DerSimonian and Laird (DL) estimator performed similarly in terms of bias and MSE to

the REML estimator. Hedges’s (HE) estimator was bias-free, but had the largest MSE of all

estimators considered. The class of (approximately) unbiased estimators was therefore

composed of the REML, DL and HE estimators. However, since the sampling variability

of the HE estimator generally exceeded that of the REML estimator and since the DL

estimator was not always well defined asymptotically, Viechtbauer (2005) rec-
ommended the REML estimator for general use.

5. Homogeneity tests

As was mentioned earlier, the random-effects model reduces to the fixed-effects model

when s 2
u ¼ 0. Therefore, when s 2

u is estimated to be zero, then the fixed-effects model

is automatically obtained (negative estimates of s 2
u are usually set equal to zero and lead

to the same conclusion). Estimating the amount of population heterogeneity in the

effect sizes is one possible approach for model selection. However, even when s 2
u ¼ 0,

estimates of s 2
u can be greater than zero simply due to sampling fluctuations. Therefore,

one can either employ substantive considerations to judge whether a certain amount of

population heterogeneity is ‘large’ or employ one of the following hypothesis tests.

5.1. Q test
The Q test is the most frequently applied test in meta-analysis to determine whether the

population effect sizes are homogeneous. Some of the earliest references to the Q test in

the meta-analytic context can be found in Hedges (1982a, 1982b, 1983), Rosenthal and

Rubin (1982), and Viana (1980). Earlier references to the test, foreshadowing its use in
meta-analysis, can be found in Cochran (1937, 1954) and Rao (1973).

When the null hypothesis H0: u1 ¼ : : : ¼ uk (i.e. H0: s
2
u ¼ 0) is true and ES is given

by (8) with wi ¼ 1=s 2
1i
, then

Q ¼
Xk
i¼1

wiðESi 2 ESÞ2 ð13Þ

is distributed as chi-squared with k 2 1 degrees of freedom. As the variability in the

observed effect sizes starts to exceed the amount of variability due to sampling error

alone, Q will increase accordingly. Therefore, rejection of H0 depends on whether the

observed test statistic exceeds the 100(1 2 a)th percentile of a chi-squared random

variable at a chosen Type I error rate given by a.
If the value of Q is calculated with wi ¼ 1=ŝ 2

1i
, where ŝ 2

1i
is some consistent

estimator of the sampling variance, and/or the ESi -values are only normally distributed

for large sample sizes, then the distribution of Q is asymptotically chi-squared. It should

be emphasized that the asymptotic behaviour of the Q statistic then depends only on the

within-study sample sizes being large and not on the value of k. In other words, the

distribution of Q under H0 is exactly chi-squared when the sample sizes of all k studies

become large, even when k itself is small.

A substantial number of simulation studies have been carried out to investigate the
Type I error rateandpowerof theQ test (Alexander, Scozzaro,&Borodkin, 1989;Callender

& Osburn, 1988; Field, 2001; Hardy & Thompson, 1998; Harwell, 1997; Hedges, 1982a,

1982b; Johnson, Mullen, & Salas, 1995; Koslowsky & Sagie, 1993; Morris, 2000;

Rasmussen & Loher, 1988; Sackett, Harris, & Orr, 1986; Sagie & Koslowsky, 1993;
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Sánchez-Meca & Marı́n-Martı́nez, 1997; Schmidt & Hunter, 1999; Spector & Levine,

1987). Also, Hedges and Pigott (2001) derived equations for calculating the approximate

power of the Q test. Based on this collection of research, some general conclusions are

warranted.

The studies suggest that the Q test generally keeps the Type I error rate close to the

nominal a-value when assumptions underlying the effect size measures are not severely

violated and within-study sample sizes are not too small. On the other hand, the Q test

lacks sufficient power to detect heterogeneity when the within-study sample sizes

and/or the number of studies are small. However, power of the test seems adequate

(here defined as exceeding about .80) when based on at least 40 effect size estimates and

the sample sizes exceed at least 40 observations (more precisely, a sample size of 40

observations per experimental group when using the SMD and 40 observations in total

when using the correlation coefficient as the effect size measure). Nevertheless, if the

amount of heterogeneity in the population effect sizes is small, then it is unlikely to be

detected. In those cases, sample sizes exceeding 100 observations within each study

and/or a larger number of effect size estimates would be needed.

5.2. Likelihood ratio test
As shown earlier, the meta-analytic models considered here are just special cases of the

GLMM. Likelihood ratio (LR) tests (Hartley & Rao, 1967; Verbeke & Molenberghs, 1997,

2003) are frequently used in the GLMM framework to test the significance of variance

components. This immediately raises the possibility of using LR tests in meta-analysis to
examine the null hypothesis that the amount of population heterogeneity is zero. The

test is carried out as follows. Let û ðMLÞ be the value of (8) for wi ¼ 1=s 2
1i
, which is the

MLE of u under the fixed-effects model. Next, we obtain the ML estimates m̂
ðMLÞ
u and

ŝ
2ðMLÞ
u iteratively as described earlier. Then under H0,

LR ¼ 22 ln Lðû ðMLÞ; 0Þ2 ln L
�
m̂
ðMLÞ
u ; ŝ

2ðMLÞ
u

�� �
ð14Þ

is asymptotically distributed as a 50:50 mixture of a degenerate random variable with all

of its probability mass concentrated at 0 and a chi-square random variable with one

degree of freedom. This follows from results obtained by Stram and Lee (1994), which in

turn are based on Self and Liang (1987). Therefore, when Pðx21 . LRÞ , 2a, where x21 is
a chi-squared random variable with one degree of freedom, we reject the null

hypothesis. Alternatively, when using REML estimation, the test statistic is given by

LRR ¼ 22 ln LRð0Þ2 ln LR ŝ
2ðREMLÞ
u

� �� �
ð15Þ

and we reject H0 when Pðx21 . LRRÞ , 2a.
As defined above, these two test statistics approach the given mixture distribution

when k becomes large. However, we typically do not know the values of s 2
1i
exactly

and instead must rely on consistent estimates thereof. Therefore, û ðMLÞ, m̂ðMLÞ
u , ŝ

2ðMLÞ
u and

ŝ
2ðREMLÞ
u are only truly ML/REML estimates when the within-study sample sizes are large.

Consequently, the correct asymptotic behaviour of the LR and LRR statistics requires not

only k to become large, but also large sample sizes within each of the k studies.

The properties of the LR tests for examining the homogeneity of effect sizes have not

been studied extensively. Hardy and Thompson (1996) briefly mention the test statistic

LR, but do not provide any results regarding its statsitical properties. However,
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because s 2
u falls on the boundary of the parameter space under the null hypothesis, the

usual likelihood principles (Hartley & Rao, 1967) do not apply (Self & Liang, 1987; Stram

& Lee, 1994) and the correct distribution under H0 is the aforementioned mixture

distribution.

LR testing was also briefly mentioned by DerSimonian and Laird (1986) and Hedges

and Olkin (1985), but not further examined because of the computational difficulties

involved in obtaining ML estimates. The only study examining the Type I error rate and

power of the LR test in the meta-analytic context was conducted by Takkouche,

Cadarso-Suárez, and Spiegelman (1999). However, their paper did not actually describe

how to obtain the ML estimates and neither REML estimation nor the LRR statistic was

mentioned. Also, the paper focused specifically on the odds ratio and relative risk as

effect size measures, which are less frequently used in the behavioural sciences than

mean differences and correlations. Nevertheless, Takkouche et al. found the LR statistic

to be somewhat conservative in controlling the Type I error rate and its power was

slightly lower than that of the Q test. However, without further study, it is unclear

whether this is also true for the LRR statistic and for other effect size measures.

5.3. Wald test
Under certain regularity conditions, estimators based on the likelihood principle can be

shown to be consistent, asymptotically fully efficient, and asymptotically normally

distributed (Lehmann, 1999). In those cases, the inverse of the Fisher information

evaluated at the parameter estimate provides a consistent estimate of the asymptotic

sampling variance of the MLE. Dividing the MLE by the estimated standard error yields
the Wald statistic, which can be compared against the critical values of a standard

normal distribution to test whether the parameter is significantly different from zero.

The asymptotic sampling variances of ŝ
2ðMLÞ
u and ŝ

2ðREMLÞ
u are given by

Var1 ŝ
2ðMLÞ
u

h i
¼ 2

Xk
i¼1

w2
i

� !21

ð16Þ

and

Var1 ŝ
2ðREMLÞ
u

h i
¼ 2

Xk
i¼1

w2
i 2 2

Pk
i¼1w

3
iPk

i¼1wi

þ
Pk

i¼1w
2
i

� �2Pk
i¼1wi

� �2
� !21

; ð17Þ

respectively. Estimates of the sampling variances are obtained by evaluating the equations

with the corresponding estimates of s 2
u, namely, by setting wi to 1=ðŝ 2ðMLÞ

u þ ŝ 2
1i
Þ and

1=ðŝ2ðREMLÞ
u þ ŝ2

1i
Þ, respectively. The corresponding Wald statistics are then given by

z ¼ ŝ
2ðMLÞ
uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var1 ŝ
2ðMLÞ
u

h ir ð18Þ

and

zR ¼ ŝ
2ðREMLÞ
uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var1 ŝ
2ðREMLÞ
u

h ir : ð19Þ

Let z12a be the 100(1 2 a)th percentile of the standard normal distribution. Then

we reject H0 if z . z12a when using the ML-based test and zR . z12a when using its
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REML-based counterpart. Note that these are one-sided tests since the alternative

hypothesis, HA : s 2
u . 0, is also one-sided.

However, testing whether a variance component is equal to zero implies that the

parameter falls on the boundary of the parameter space under the null hypothesis.

Standard likelihood principles are no longer valid in this case (Self & Liang, 1987; Stram

& Lee, 1994; Verbeke & Molenberghs, 1997, 2003). Therefore, the Wald tests are not
expected to control the Type I error rate adequately. However, it is unknown to what

extent these tests can still be used as approximations or as a rough first check for testing

the homogeneity of effect sizes in the meta-analytic context. This is of particular

concern as Wald tests (or corresponding confidence intervals) are still used occasionally

for testing the homogeneity of effect sizes (Wang & Bushman, 1999).

5.4. Score test
Rao’s score test (Lehmann, 1999) can also be adopted as another alternative for testing

the homogeneity of effect sizes. The score function is defined as the first derivative of the

log-likelihood evaluated under H0. Dividing the score function by the square root of the

Fisher information yields the score statistic, which can be compared against the critical
values of a standard normal distribution.

Based on the log-likelihood given in (7), we obtain the score statistic

s ¼

ffiffi
1
2

q Pk
i¼1w

2
i ðESi 2 m0Þ2 2 s 2

1i

h i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk

i¼1w
2
i

q ; ð20Þ

where wi ¼ 1=s 2
1i
. Note that (20) contains the unknown parameter mu, which we must

replace with some sample estimate to obtain a usable test statistic. Recall that û ðMLÞ was

earlier defined as the value of (8) evaluated with wi ¼ 1=s 2
1i
. Specifically, û ðMLÞ is the

MLE of the population effect size u under the fixed-effects model. Since the score

function is evaluated under the null hypothesis, an asymptotically equivalent test is

obtained by substituting û ðMLÞ for mu in (20). Alternatively, starting with the restricted

log-likelihood function given by (10) yields the test statistic

sR ¼

ffiffi
1
2

q Pk
i¼1w

2
i ESi 2 û ðMLÞ� �2

2s 2
1i
þ Pk

i¼1wi

� �21
h i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk
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i

� �
=
Pk

i¼1wi þ
Pk

i¼1w
2
i

� �2
=
Pk

i¼1wi

� �2q ; ð21Þ

which automatically involves û ðMLÞ without requiring any further substitutions. In
practice, we must set wi ¼ 1=ŝ2

1i
and replace s 2

1i
with ŝ2

1i
in (20) and (21). Again, one

would reject the null hypothesis when s or sR exceeds z12a, depending on which of the

two tests is being used. Note that these are one-sided score tests (Verbeke &

Molenberghs, 2003).

One advantage of the score test over the LR and Wald tests is that it does not require

explicit estimation of the parameter being tested. This is particularly useful when the

parameter estimate does not have a closed-form solution and must be found numerically,

as in the case considered here when using either ML or REML estimation. Although some
non-iterative estimators of s 2

u exist, the score test avoids this additional computational

step altogether. No reference to the score test for examining the homogeneity of effect

sizes in the meta-analytic context could be found in the literature. Therefore, it is

unknown at this point whether the score test is a viable alternative to the other tests.
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6. Examples

Two examples will illustrate the use of the different homogeneity tests and demonstrate

that they can provide conflicting conclusions about the presence of population
heterogeneity. The first data set, given in Table 1, provides the results for k ¼ 10 studies

that examined the effectiveness of open versus traditional education programmes on

student creativity (Hedges & Olkin, 1985, p. 25). The table lists the effect size estimate

(ESi), the estimated sampling variance ðŝ2
1i
Þ, and the inverse sampling variance weight

ðwi ¼ 1=ŝ2
1i
Þ for each study.1

The weighted average of the effect size estimates (Equation (8) with wi ¼ 1=ŝ2
1i
Þ is

equal to 0.050. The value of Q is then easily computed with (13) and is found to be

46.03. The 95th percentile of a chi-squared random variable with k 2 1 ¼ 9 degrees of

freedom is equal to 16.92 and therefore the Q test indicates the presence of

heterogeneity over and beyond that which we would expect based on sampling error

alone.
To apply the LR tests, we must first obtain the ML and REML estimates of s 2

u. Using

the iterative scheme described earlier, we find ŝ
2ðMLÞ
u ¼ 0:197 and ŝ

2ðREMLÞ
u ¼ 0:223.

Knowing this, we set wi ¼ 1=ð1ŝ2ðMLÞ
u þ ŝ2

1i
Þ and then find m̂

ðMLÞ
u ¼ 0:240 based on (8).

Finally, the values of the LR tests are obtained from (14) and (15) and are equal to 24.42

and 25.98, both of which are significant when compared to the mixture distribution

(both p-values are smaller than .001).

The asymptotic sampling variances of the ML and REML estimates of s 2
u are given by

(16) and (17) and turn out to be 0.016 and 0.021, respectively. The Wald statistics are

then easily computed with (18) and (19) and are equal to 1.57 and 1.52. Compared to

1.65, the 95th percentile of a standard normal random variable, we conclude that the

effect sizes are homogeneous.

Table 1. Results for 10 studies of the effectiveness of open versus traditional education on student

creativity

Study Effect size (ESi) Variance ðŝ2
1i
Þ Weights ðwi ¼ 1=ŝ2

1i
Þ

1 20.581 0.023 43.478
2 0.530 0.052 19.231
3 0.771 0.060 16.667
4 1.031 0.115 8.696
5 0.553 0.095 10.526
6 0.295 0.203 4.926
7 0.078 0.200 5.000
8 0.573 0.210 4.762
9 20.176 0.051 19.608
10 20.232 0.040 25.000

Note. The ESi are unbiased estimates of the SMD effect size measure. The data were obtained from
Hedges and Olkin (1985, p. 25).

1 The two examples discussed in the present section use the SMD (to be discussed in more detail below) as the effect size
measure. The ESi are the unbiased effect size estimates.
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Finally, the score statistics are computed with (20) and (21) wherewi ¼ 1=ŝ2
1i
and mu

in (20) is replaced with 0.050, the weighted average of the effect size estimates under

the fixed-effects model. We find s ¼ 11:49 and sR ¼ 13:53, both of which are significant

when compared against the 95th percentile of a standard normal random variable.

Therefore, the score tests indicate the presence of population heterogeneity.
In this particular example, theQ, LR, and score tests all indicate heterogeneous effect

sizes, while the two Wald tests suggest the opposite. A different pattern of results is

obtained for the data in Table 2, which provides results for k ¼ 18 studies comparing

open versus traditional education using student self-concept as the outcome variable

(Hedges & Olkin, 1985, p. 25). Here, Q ¼ 23:46, which is not significant when

compared against the 95th percentile of a chi-square random variable with 17 degrees of

freedom. The two Wald tests (z ¼ 0:88 and zR ¼ 0:94) and the two LR tests (LR ¼ 1:71,
p ¼ :10 and LRR ¼ 2:14, p ¼ :07) also indicate the absence of heterogeneity in the effect

sizes. However, the score statistics are equal to s ¼ 1:73 and sR ¼ 2:03, which would

lead to the rejection of the null hypothesis. In this particular example, the two score

tests indicate heterogeneity, while using the Q, LR, and Wald tests would lead to the

opposite conclusion.

7. Monte Carlo simulations

The examples in the previous section demonstrate that the results from the various

homogeneity tests can lead to conflicting conclusions about the presence of

heterogeneity in the effect sizes. However, without further analysis of the tests, it is

unclear whether we should attribute more confidence to any particular test result.

Table 2. Results for 18 studies of the effectiveness of open versus traditional education on student

self-concept

Study Effect size (ESi) Variance ðŝ2
1i
Þ Weights ðwi ¼ 1=ŝ2

1i
Þ

1 .100 .016 62.500
2 2 .162 .015 66.667
3 2 .090 .050 20.000
4 2 .049 .050 20.000
5 2 .046 .032 31.250
6 2 .010 .052 19.231
7 2 .431 .036 27.778
8 2 .261 .024 41.667
9 .134 .034 29.412
10 .019 .033 30.303
11 .175 .031 32.258
12 .056 .034 29.412
13 .045 .039 25.641
14 .103 .167 5.988
15 .121 .134 7.463
16 2 .482 .096 10.417
17 .290 .016 62.500
18 .342 .035 28.571

Note. The ESi are unbiased estimates of the SMD effect size measure. The data were obtained from
Hedges and Olkin (1985, p. 25).
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Because the ML and REML estimates must be obtained numerically, it would be difficult

to compare the properties of the various tests analytically. Instead, Monte Carlo

simulations were conducted to assess the Type I error rate and power of these tests.

Simulations were carried out with four different effect size measures: the UMD, the SMD,

the raw correlation coefficient, and the variance-stabilized correlation coefficient after

applying the Fisher transformation. The influence of four factors on the Type I error rate
and power of the tests was examined: the number of effect sizes (k), the average effect

size in the population (mu), the amount of sampling error in the effect size estimates

ðs 2
1i
Þ and the amount of population heterogeneity ðs 2

uÞ.
Five different values of k were chosen, namely 5, 10, 20, 40 and 80, representing

values typically seen in practice. For example, in 24 meta-analyses conducted in three

research domains (medicine and behavioural medicine, social and clinical psychology,

and organizational psychology), k ranged between 5 and 76 (Rosenthal & DiMatteo,

2001).

For the SMD and the correlation coefficient (and its variance-stabilized version),

values of mu were chosen according to Cohen’s (1988) conventional definitions of small,

medium, and large effect sizes, which also represent typical effect size values

encountered in practice. The inclusion of various values of mu for these effect size

measures is important for the following reason. As discussed below, the shape of the

distribution for these effect size measures is related to the location parameter ui. Since ui
is a function of mu, this relationship introduces a possible dependence between the

performance of the homogeneity tests and mu. On the other hand, the distribution of the

UMD is exactly normal and does not depend (in its shape) on the location parameter.

Therefore, different values of mu should not have any influence on the performance of

the homogeneity tests. This conjecture was checked by including very disparate values

of mu in the simulations for this effect size measure.

The amount of sampling error in the effect size estimates ðs 2
1i
Þ was manipulated by

adjusting the within-study sample sizes (as mentioned previously, s 2
1i
is inversely related

to the sample size). Within-study sample sizes between 20 and 640 observations were

chosen to cover a very wide range of possible cases.

Finally, the values of s 2
u were chosen as follows. Naturally, s 2

u ¼ 0 was included in

the simulations to investigate the performance of the tests when no population

heterogeneity is present. The remaining values of s 2
u were chosen to cover a similar

range s 2
1i
. Therefore, we obtain representative results for the condition where we have

no population heterogeneity up to the case where we have a large amount of

heterogeneity that is approximately equal to the amount of sampling variability in an

effect size estimate from a very small study.

In each iteration of the simulations, k values of ui were generated from Nðmu;s
2
uÞ.

Next, k values of ESi and ŝ2
1i

were generated from the appropriate distributions, as

detailed in the methods sections below. The various test statistics were then computed

and tested for significance with a ¼ :05. Any trial in which the ML or REML estimators

did not converge was skipped and replaced by an additional trial. Overall, this occurred

in about 0.04% of the trials and therefore should not affect the results substantially.

The Type I error rate of a test was estimated by the proportion of iterations in which

the true value of s 2
u was set to zero, but H0 : s

2
u ¼ 0 was rejected. On the other

hand, the proportion of iterations rejecting H0 when s 2
u . 0 indicates the empirical

power of a test.
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7.1. Unstandardized mean difference

7.1.1. Methods
Let XC

ij and XE
ij be the jth observations from a control and an experimental group in the

ith study. Assume that XC
ij , NðmC

i ; s
2
i Þ and XE

ij , NðmE
i ; s

2
i Þ. For the ith study, the

unstandardized mean difference is defined as ui ¼ mE
i 2 mC

i . Given nC
i and nE

i

observations from the control and experimental group, respectively, ESi ¼ 
X
E
i 2 
X

C
i

provides an unbiased estimate of ui. The distribution of ESi is NðmE
i 2 mC

i ; s
2
i ð1=nE

i þ
1=nC

i ÞÞ and the sampling variance of ESi can be estimated without bias by

ŝ2
1i
¼ s2i ð1=nE

i þ 1=nC
i Þ, where s2i is the usual pooled within-group variance.

The UMD is a useful effect size measure when all studies use a commensurable

measurement scale to assess group differences (Bond, Wiitala, & Richard, 2003; Lipsey

& Wilson, 2001). Moreover, the UMD provides a useful benchmark for the homogeneity

tests, because all assumptions of the model (except known values of s 2
1i
) are satisfied. In

particular, the effect size measure is exactly normally distributed, it is unbiased, and its

sampling variance is independent of ui. Some or all of these properties only hold
asymptotically for many other effect size measures that are commonly used. Therefore,

the UMD allows us to examine how well the tests perform under what might be

considered ideal conditions.

To make the number of simulated conditions more manageable, it was assumed that

ni ¼ nC
i ¼ nE

i and s 2
i was set to 10.2 Moreover, mC

i was set to zero and mE
i was sampled

from Nðmu; s
2
uÞ to generate heterogeneous values of ui. The levels of the factors were as

follows: mu ¼ ð0; 1; 10; 100Þ, s 2
u ¼ ð0; 0:125; 0:25; 0:5; 1Þ and 
ni ¼ ð20; 40; 80; 160;

320; 640Þ, and consequently, s 2
1i
¼ ð1; 0:5; 0:25; 0:125; 0:0625; 0:3125Þ. To simulate

heterogeneous sample sizes (and therefore heterogeneous sampling variances), the

values ofniwere sampled from anormal distributionwithmean 
ni and standard deviation


ni=3. Including the various values fork, this yields a 5 £ 4 £ 5 £ 6 factorial designwith a

total of 600 conditions. For each condition, 10,000 iterations were carried out. However,

to get more accurate estimates of the Type I error rate, 100,000 iterations were used for

the conditions where s 2
u ¼ 0.

7.1.2. Results
Not surprisingly, the Type I error rate and power of the homogeneity tests did not

depend on mu. All subsequent results were therefore averaged over this factor for this

effect size measure. The Type I error rates for the various homogeneity tests are shown
in Figure 1 as a function of k and 
ni. The results for the two Wald tests were so similar

(they never differed by more than 1%) that only those based on the z statistic were

plotted (i.e. the results for the Wald test based on the ML estimate). The horizontal

dashed line indicates the nominal a ¼ :05 value. In general, smaller values of 
ni were

associated with higher Type I error rates, but once 
ni exceeded 80 observations, further

increases in sample size resulted in little or no change in the behaviour of the tests. On

the other hand, increasing k when 
ni is small resulted in increasingly inflated Type I

error rates for all of the tests.
The Type I error rate of the Q test approached the nominal a-value as the average

within-study sample size increased. As expected, this was true regardless of the value of

2 For ni ¼ nCi ¼ ni
E, the sampling variance of ESi is given by s 1i

2 ¼ 2s i
2/ni. Therefore, changes in s 1i

2 can be induced by
manipulating ni or s i

2. For simplicity, change in s 1i
2 was induced by setting s i

2 2 10 and manipulating ni as detailed in the text.
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k. On the other hand, both Wald tests were overly conservative (except for k ¼ 80 and


ni ¼ 20) and appeared to converge only very slowly to nominal behaviour as k

increased. Within the conditions studied, the Wald tests never actually reached the

nominal a level.3

The results for the LR tests were as expected. As hypothesized earlier, the Type I error

rate converged to the nominal a-value only when both 
ni and k increased. Larger values

of 
ni ensure that the assumption of known s 2
1i

is approximately satisfied, which in

turn ensures convergence of the LR statistics to the mixture distribution as k increases.4

The ML-based LR test was slightly more conservative than its REML-based counterpart.

The last two homogeneity tests examined were the score statistics s and sR. The Type

I error rate of s converged to the nominal a-value with increasing 
ni as long as k was

slightly larger than 10. The sR statistic, on the other hand, showed somewhat inflated

Type I error rates even for large 
ni and k and appeared to converge to a Type I error rate

a few percentage points above the nominal value.

Figure 2 shows plots of the observed rejection rates as a function of s 2
u for nine

different combinations of k and 
ni. When interpreting Figure 2, one must bear in mind

that differences among the rejection rates are not only a function of how sensitive the

Figure 1. Type I error rates of the homogeneity tests for the unstandardized mean difference.

3 Additional simulations were run with larger values of k and n̄i to examine whether the Type I error rate of the Wald tests
would converge to .05. The behaviour of the tests approached the nominal a level only when a very large number of effect sizes
(e.g. k$ 500) was paired with large sample sizes (e.g., n̄i $ 640). However, meta-analyses of this magnitude are unrealistic
in practice and, therefore, the behaviour of the Wald tests is generally too conservative.
4 The validity of this conjecture was further supported by running additional simulations where ŝ2

1i
was set to s 2

1i
, that is

simulating the case where the sampling variances are exactly known even when the within-study sample sizes are small. In this
case, the Type I error rate of the tests no longer depended on n̄i and was approximately equal to that displayed in Figure 1 for
n̄i ¼ 640.
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tests are in detecting heterogeneity, but also a function of how well the tests control the

Type I error rate. For example, the Type I error rates of the two Wald tests were

generally too conservative, which in turn reduces the probability that these tests will

detect heterogeneity when it is in fact present. By adjusting the critical values of the

tests such that the Type I error rates are exactly nominal, one could determine whether

the tests differ strictly in their sensitivity to the presence of heterogeneity. However,

such adjustments are not a feasible option in practice. Therefore, Figure 2 indicates how

well the tests detect heterogeneity, bearing in mind that the rejection rates are also

influenced by the actual Type I error rates of the tests.

Under these considerations, we note that increasing k, 
ni, and/or s 2
u resulted in

higher probabilities of rejecting the null hypothesis and that the various homogeneity

tests did not differ greatly with respect to their ability to detect heterogeneity, except for

the two Wald tests, whose rejection rates were substantially lower than those of the

other tests. The slight differences between the Q, LR, and score tests appear to be

attributable to the fact that some of the tests did not control the Type I error rate

adequately under certain conditions.

7.2. Standardized mean difference

7.2.1. Methods
When XC

ij , NðmC
i ; s

2
i Þ and XE

ij , NðmE
i ; s

2
i Þ as for the UMD and the measurement

scale is not commensurable across studies, then the standardized mean difference is

often chosen as an effect size measure. Now, ui ¼ ðmE
i 2 mC

i Þ=s i, which can be

estimated unbiasedly by ESi ¼ cðmiÞð 
XE
i ¼ 
X

C
i Þ=si, where

Figure 2. Rejection rates of the homogeneity tests for the unstandardized mean difference.
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cðmiÞ ¼ Gðmi=2Þ
ðmi=2Þ1=2Gððmi 2 1Þ=2Þ

and mi ¼ nE
i þ nC

i 2 2 (Hedges, 1981). An unbiased estimate of s 2
1i
is given by

ŝ2
1i
¼ 1

~ni

þ 12
mi 2 2

mi½cðmiÞ�2
� !

ES2i ;

where ~ni ¼ ðnE
i n

C
i Þ=ðnE

i þ nC
i Þ (Hedges, 1983). The distribution of ESi is asymptotically

normal and is closely related to a non-central t-distribution. In fact, cðmiÞ21ð ~niÞ1=2ESi is
distributed as non-central t with mi degrees of freedom and non-centrality parameter

uið ~niÞ1=2. Therefore, the distribution of ESi is symmetric for ui ¼ 0 (and quickly

approaches normality asmi increases), while larger values of juij result in an increasingly

skewed distribution of ESi. The exact sampling variance of ESi is equal to

s 2
1i
¼ ½cðmiÞ�2mi½1þ ~niu

2
i �

ðmi 2 2Þ ~ni

2 u2i :

Note that s 2
1i

depends on ui, which in turn is determined by ti. This violates the

assumption that Cov½ti; 1i� ¼ 0.

Again, it was assumed that ni ¼ nC
i ¼ nE

i . The levels of the various factors were as

follows: mu ¼ ð0; 0:2; 0:5; 0:8Þ, s 2
u ¼ ð0; 0:01; 0:25; 0:05; 0:1Þ and 
ni ¼ ð20; 40; 80;

160; 320; 640Þ, and consequently s 2
1i

was roughly between 0.101 and 0.110 for
ni ¼ 20 and around 0.003 for ni ¼ 640 (the exact value of s 2

1i
depends on ui). We again

obtain a 5 £ 4 £ 5 £ 6 factorial design with 600 conditions in total. For each condition,

10,000 iterations were carried out, while 100,000 iterations were used for the s 2
u ¼ 0

condition.

7.2.2. Results
The Type I error rate of the homogeneity tests again did not depend on mu, therefore
results could be averaged over this factor. This finding was somewhat surprising,

because of the aforementioned dependence between ui and the distribution of ESi. It

appears that, within the range of mu -values studied, this dependence is not large enough

to influence the performance of the homogeneity tests (in fact, an additional set of

simulations revealed essentially unchanged Type I error rates even when mu was set to

1.5, 2 or 3).

Figure 3 shows the Type I error rates of the homogeneity tests as a function of the

average sample size and number of effect sizes. The results for the REML-based Wald test
were again so similar to those for its ML counterpart that only the latter were plotted.

All tests showed behaviour that indicated convergence to the nominal Type I error rate

as 
ni and k increased. The tests approached the nominal a level from below, except for

the score test based on the sR statistic, which overshot the .05 level slightly for larger

values of 
ni. Generally, average sample size had relatively little influence on Type I error

rates once 
ni $ 80. The Q test controlled the Type I error rate quite well after that point,

regardless of k. The convergence of theWald tests, on the other hand, was very slow and

did not reach nominal levels within the conditions studied. Of the two likelihood ratio
tests, the REML-based one yielded results slightly closer to the nominal a level, but both

tests were still a little bit too conservative even when k ¼ 80. The score statistic

s controlled the Type I error rate adequately as long as k $ 40 and 
ni $ 160, while the

score test based on sR was slightly too liberal when 
ni . 80 even when k ¼ 80.
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Figure 4 shows plots of the observed rejection rates as a function of s 2
u for nine

different combinations of k and 
ni. Keeping the considerations with respect to the

relationship between Type I error rates and power in mind, the results were very similar

to those found for the UMD: (a) larger values of k, 
ni, and/or s
2
u were associated with

higher probabilities of detecting heterogeneity when it was present, (b) the Wald tests

had substantially lower rejection rates than the other tests, and (c) the rejection rates of

the Q, LR, and score tests were very similar to each other.

7.3. Raw correlation coefficient

7.3.1. Methods
Let Xij and Yij denote a pair of observations of the jth individual on two random variables

in the ith study. Assume that Xij and Yij are distributed bivariate normal with means mX
i ,

mY
i , standard deviations s X

i , s
Y
i , and correlation ri. Now the effect size is defined simply

as ui ¼ ri. Given j ¼ 1; : : :ni pairs of scores from this bivariate distribution, we can

estimate ui with the sample product-moment correlation coefficient ri. Hotelling (1953)

showed that ri is a negatively biased estimator of its population value. An exactly

unbiased estimator of ui was derived by Olkin and Pratt (1958) and is given by

rUi ¼ riF
1

2
;
1

2
;
ni 2 2

2
; 12 r2i

� �
; ð22Þ

where

Fða;b; g; xÞ ¼
X1
j¼0

Gðaþ jÞGðbþ jÞGðgÞ
GðaÞGðbÞGðgþ jÞ

xj

j!
ð23Þ

Figure 3. Type I error rates of the homogeneity tests for the standardized mean difference.
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denotes the well-known hypergeometric function. The exactly unbiased estimator is

closely approximated by

ESi ¼ ri þ rið12 r2i Þ
2ðni 2 4Þ : ð24Þ

Note that one will often find ni 2 3 instead of ni 2 4 written in the denominator of the

second term in (24). Olkin and Pratt used Ni to denote the sample size and ni for the

degrees of freedom, which are Ni 2 1 in the case where all the parameters are

unknown. Since that is the usual case, dividing by ni 2 4 yields a more accurate
approximation than when dividing by ni 2 3.

The exact sampling variance of ESi is unknown. However, since ESi ! ri as ni ! 1,

the large-sample approximation of the sampling variance of ESi is the same as that of the

regular correlation coefficient (Olkin & Pratt, 1958), namely,

s 2
1i
¼ ð12 u2i Þ2

ni 2 1
: ð25Þ

Replacing ui by either ri or its (approximately) unbiased estimate ESi yields a

consistent estimate for the sampling variance, albeit a biased one. An approximately

unbiased estimate of the sampling variance of ESi is given by

ŝ2
1i
¼ ðESiÞ2 2 1þ ni 2 3

ni 2 2

� �

� ð12 r2i Þ þ
2ð12 r2i Þ2

ni

þ 8ð12 r2i Þ3
niðni þ 2Þ þ

48ð12 r2i Þ4
niðni þ 2Þðni þ 4Þ

� !
ð26Þ

(Hedges, 1989, with correction of his Equation 19, p. 474).

Figure 4. Rejection rates of the homogeneity tests for the standardized mean difference.
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The distribution of ESi is normal only when ni is large. The skew in the distribution of

ESi depends on the extent to which juij diverges from 0. Finally, we note that the

sampling variance of ESi depends on the parameter ui. Therefore, ti and 1i are not

independent for this effect size measure.

For the simulations, k values of ui were first sampled from Nðmu; s
2
uÞ. Values of ui

outside the admissible range of21 to 1 were truncated to2 .99 and .99. Next, k sets of

ni random variables were sampled from bivariate standard normal distributions with

ui ¼ ri. Within each set, ESi and ŝ2
1i
were computed using (24) and (26), respectively.

The resulting k values of ESi were then tested for homogeneity. The levels of

the factors were: mu ¼ (0, 0.1, 0.3, 0.5), s 2
u ¼ ð0; 0:005; 0:01; 0:02; 0:04Þ, and


ni ¼ ð20; 40; 80; 160; 320; 640Þ, and consequently, s 2
1i
was roughly between 0.03 and

0.05 for 
ni ¼ 20 and between 0.001 and 0.002 for 
ni ¼ 640. This again yields a

5 £ 4 £ 5 £ 6 factorial design. Because the data generating process is computationally

more intensive for this effect size measure, the number of iterations was reduced to

1,000, with 100,000 iterations run for the s 2
u ¼ 0 conditions.

7.3.2. Results
The Type I error rate of the homogeneity tests depended on mu when 
ni # 40, with

smaller values of mu being associated with more inflated Type I error rates, especially

when k was large. However, once the average within-study sample size exceeded 40

observations, the behaviour of the homogeneity tests was essentially unaffected by

changes in mu. Figures 5 and 6 illustrate this by showing the Type I error rate of the tests

as a function of k and 
ni for mu ¼ 0 and mu ¼ 0.5, respectively. The two Wald tests again

differed so little in their behaviour that only the results for the ML-based test were
plotted.

Figure 5. Type I error rates of the homogeneity tests for the correlation coefficient when mu ¼ 0.
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The most noticeable finding in this set of simulations were the extremely inflated

Type I error rates for small sample sizes, especially when k is large. In fact, increasing k

resulted in progressively higher probabilities of rejecting the null hypothesis. The

severity of this finding was so surprising that another set of simulations was run, this

time using Equation (25) to estimate s 2
1i
(with ui replaced by ESi). However, the inflation

in Type I error rate rates for small 
ni was the same or even more extreme in this case.

As 
ni increases, the Type I error rate of theQ test converges to nominal levels regardless

of k. The two LR tests and the score test based on the s statistic controlled the Type I error
rate only when both 
ni and kwere large. On the other hand, the score test based on sR did

not reach the nominal a level within the conditions studied and instead remained slightly

too liberal. Finally, the Wald tests quickly became conservative with increasing 
ni and

began to converge very slowly to a ¼ :05 as k increased. Nevertheless, neither of the two

Wald tests actually reached the nominal Type I error rate evenwhen k ¼ 80 and 
ni ¼ 640.

Figure 7 shows plots of the observed rejection rates as a function of s 2
u for nine

different combinations of k and 
ni when mu ¼ 0. As before, increasing k, 
ni, and/or s
2
u

results in higher probabilities of detecting heterogeneity when it is in fact present. The
tests did not differ greatly in their behaviour, except for the two Wald tests which again

revealed substantially lower rejection rates.

7.4. Correlation coefficient with Fisher transformation

7.4.1. Methods
For large values of jrij, the distribution of the raw correlation coefficient approaches the

normal distribution only relatively slowly as the sample size increases. Therefore, several

Figure 6. Type I error rates of the homogeneity tests for the correlation coefficient when mu ¼ 0.5.
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researchers (Hedges & Olkin, 1985; Lipsey & Wilson, 2001; Rosenthal, 1991) have

recommended the use of Fisher’s variance-stabilizing transformation (Fisher, 1915)

before using correlation coefficients as part of a meta-analysis. Specifically, the observed

product-moment correlation coefficients are transformed into corresponding zri -values

with the equation

ESi ¼ zri ¼
1

2
ln

1þ ri

12 ri

� �
: ð27Þ

The asymptotic variance of ESi is approximately given by ŝ2
1i
¼ 1/(ni 2 3).

Therefore, as a result of the transformation, the asymptotic sampling variance of the

effect size measure no longer depends on ri. In other words, s 2
1i

is approximately

independent of ui. Moreover, the distribution of the transformed correlation coefficient

is much closer to that of a normal distribution (Hotelling, 1953), although (27) is only

asymptotically exactly normally distributed.

Simulations using transformed correlation coefficients as the effect size measure

were carried out in the exact same way as described for the raw correlation coefficients,

with the only difference being that the ri-values were first transformed with (27) before

applying the homogeneity tests.

7.4.2. Results
Since the Type I error rate of the homogeneity tests no longer depended on mu, all

subsequent results were averaged over this factor. Figure 8 shows the Type I error rates

Figure 7. Rejection rates of the homogeneity tests for the correlation coefficient when mu ¼ 0.
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for the various homogeneity tests as a function of k and 
ni (the results for z and zR were

again so similar that only results for the former were plotted). Most notably, the Type I

error rate was now essentially unaffected by changes in 
ni:
The Q test controlled the Type I error rate in all of the conditions. On the other hand,

the Wald, likelihood ratio, and score tests converged towards the nominal a level only as

k increased. Not all of these tests actually reached .05 within the conditions studied, but

the trend towards the nominal a level was apparent from the results. Finally, the tests

tended to be somewhat conservative for smaller values of k except for the sR test, which
was slightly too liberal in rejecting the null hypothesis.

Figure 9 shows that the probability of rejecting the null hypothesis increased with k,


ni and/or s 2
u for all of the tests. Any differences among the rejection rates can be

attributed to the fact that some of the tests did not control the Type I error rate

adequately when k was small. The exceptions again were the two Wald tests, whose

rejection rates were substantially lower than those of the other tests.

7.5. Some general conclusions about the simulations
One particular finding with respect to the Type I error rate of the tests was especially

disconcerting. When using raw correlation coefficients as the effect size measure and

the average sample size within studies was low, increases in k resulted in progressively
higher probabilities of rejecting the null hypothesis when in fact H0 was true. This

finding is consistent with the results of Sánchez-Meca and Marı́n-Martı́nez (1997), who

also reported inflated Type I error rates when the Q test was applied to raw correlation

coefficients under similar conditions.

Figure 8. Type I error rates of the homogeneity tests for the correlation coefficient after using Fisher’s

variance-stabilizing transformation.
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While the Type I error rate was actually adequately controlled for certain

combinations of 
ni and k (e.g. the REML-based LR test kept the Type I error rate very

close to a ¼ :05 when 
ni ¼ 80 and k ¼ 5, as can be seen in Figures 5 and 6), the

inflation in Type I error rates was so extreme for most conditions that the homogeneity

tests are practically meaningless for meta-analyses based on a large number of

correlation coefficients derived from studies with small sample sizes. In those cases, one

is almost guaranteed to reject the null hypothesis and conclude that the effect sizes are

heterogeneous, whether this is true or not.

However, for larger values of 
ni, the tests at least showed behaviour that indicated

convergence towards thenominala level ask increased.Moreover, an obvious remedy for

the inflated Type I error rates is the use of the Fisher transformation. The Type I error rate

of the homogeneity tests using transformed correlation coefficients was essentially

independent of 
ni and generally well controlled, especially for large k (see Figure 8).

The problem with testing the homogeneity of raw correlation coefficients was

previously noted by Hunter and Schmidt (1990) in connection with the Q test. However,

instead of suggesting the use of transformed correlation coefficients, Hunter and

Schmidt (1990, 1994) proposed a modification to the way we estimate s 2
1i
, namely by

using (25), but setting ui ¼ 
r, where


r ¼
Pk

i¼1niriPk
i¼1ni

: ð28Þ

Figure 9. Rejection rates of the homogeneity tests for the correlation coefficient after using Fisher’s

variance-stabilizing transformation.
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Since H0 implies ui ¼ u for i ¼ 1; : : : ; k, it seems reasonable to set ui in (25) equal to a

more efficient estimate of u, such as the sample size weighted average of the observed

correlation coefficients. Some additional simulations indicated that using this modified

estimate of s 2
1i
does reduce the severe inflation in Type I error rates observed for cases

where 
ni is small, but does not remove it completely, especially when mu is large.

Alexander et al. (1989) and Field (2001) reported similar findings with respect to the Q

test. Therefore, when testing the heterogeneity of correlation coefficients, the use of the

Fisher transformation is highly recommended.

The difference in behaviour of the tests for UMDs and for transformed correlation

coefficients is also worth noting. Even after applying the Fisher transformation to a

set of correlation coefficients, the distribution of zri is only exactly normal for large

sample sizes. Moreover, the sampling variance of the transformed values is only

approximated by ŝ2
1i
¼ 1=ðni 2 3Þ, and this approximation again relies on large

samples. On the other hand, the UMD effect size satisfies all of the assumptions

underlying the tests except known s 2
1i
. Nevertheless, the behaviour of the

homogeneity tests for transformed correlation coefficients could be considered

closer to optimal, especially for cases where 
ni is small. The crucial difference lies in

the way ŝ2
1i

is calculated for these two effect size measures. Calculating ŝ2
1i

for the

UMD requires estimating an additional parameter, namely s 2
i . Due to sampling

fluctuations in estimates of s 2
i (which decrease as 
ni increases), we are again

dependent on large sample sizes. On the other hand, in the case of transformed

correlation coefficients, the equation for ŝ2
1i

does not involve additional unknown

parameters, thereby avoiding this additional source of variability. Therefore, while

the distribution of zri is only asymptotically normal with sampling variance

1/(ni 2 3), the approximation appears to be accurate enough for the homogeneity

tests even when ni is quite small.

In general, the Type I error rate was controlled most adequately when using the Q

test, especially when avoiding the use of raw correlation coefficients as the effect size

measure. As expected, under the null hypothesis, the Q test follows a chi-squared

distribution with k 2 1 degrees of freedom for sufficiently large 
ni -values, even when

k is small. Moreover, the Q test enjoys the advantage of being the easiest test to carry

out. It does not require an estimate of s 2
u and avoids cumbersome computational

equations such as those used in the score tests. Finally, the other homogeneity tests

did not yield rejection rates over and above those observed for the Q test. Any

apparent differences in the rejection rates appear to be attributable to the fact that

some of the tests did not control the Type I error rate adequately under certain

conditions. For example, the score test based on the sR statistic has slightly higher

rejection rates when k and 
ni are small, but those are also the conditions where the

score test rejected the null hypothesis too often.

The use of the Wald tests should be discouraged. The Wald tests not only were

overly conservative in their Type I error rates, but also showed substantially slower

gains in their rejection rates as k, 
ni and/or s 2
u increased when compared to the

other homogeneity tests. In fact, in some conditions (e.g. k ¼ 10 and 
ni ¼ 20), the

probability of rejecting the null hypothesis when using the Wald tests was almost

unaffected by increases in s 2
u (see Figures 2 and 4). Therefore, the fixed-effects

model will be adopted too often when relying on the results of the Wald tests, which

in turn leads meta-analysts to attribute unwarranted precision to their estimate of the

overall effect size and/or to ignore the presence of potential moderators.
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On the other hand, the Wald tests have the advantage of being easily converted to

confidence intervals for s 2
u: If we let z1 2 a/2 denote the 100(1 2 a/2)th percentile of a

standard normal distribution, then a 100(1 2 a)% confidence interval for s 2
u is obtained

by adding and subtracting z12a/2 times the square root of either (16) or (17) from the ML

or REML estimate of s 2
u (see Wang & Bushman, 1999, p. 294, for an example of such a

confidence interval). In contrast, it is not possible to base confidence intervals directly

on the Q or score tests as they do not require explicit estimation of s 2
u. Also, the LR tests

cannot be simply rearranged to yield confidence intervals and instead require the use of

further iterative methods (Hardy & Thompson, 1996). However, while Wald-type

confidence intervals for s 2
u are relatively easy to obtain, the results in the present paper

indicate that such confidence intervals tend to be too wide on average and therefore

should be avoided as well.

As a final remark about the two Wald tests, it is interesting to note that their

performance was essentially indistinguishable. As mentioned earlier, the MLE of s 2
u is

negatively biased, while the REML estimator is approximately bias-free (Viechtbauer,

2005). Therefore, ML estimates tend to be too small on average, which would suggest

that z , zR. On the other hand, it can be shown that the asymptotic sampling variance

of the MLE (16) falls below that of the REML estimator (17) in finite samples

(Viechtbauer, 2004). This finding would suggest that z . zR. However, it appears that

the negative bias in the MLE is offset by its higher efficiency, resulting in two

approximately equivalent tests.
It is not overly surprising that the LR and score tests did not control the Type I error

rate quite as well as the Q test. By construction, these tests assume normally distributed

effect size estimates and known sampling variances. Large within-study sample sizes

ensure that these assumptions are approximately met. However, even when 
ni is very

large, we also need a sufficient number of effect size estimates due to the asymptotic

nature of these tests. Therefore, the asymptotic convergence of these tests requires both

large k and 
ni:
The present results are consistentwith those obtained by Takkouche et al. (1999),who

also found the LR statistic to be somewhat conservative in its Type I error rate when the

odds ratio was used as the effect size measure. As Figures 1(c), 3(c) and 8(c) show, this

finding held in the present study for the SMD and the transformed correlation coefficient

and also for the UMD as long as small within-study sample sizes were not paired with

large k.

The current study also indicates that the performance of the LR test can be slightly

improved by basing the test on REML estimation. Specifically, the Type I error rate of the

LRR statistic tended to be closer to nominal than when using the LR statistic. Takkouche

et al. (1999) did not examine the REML-based LR test, but a similar finding was reported

by Morrell (1998) when testing the significance of variance components in the context

of repeated-measures designs.

To put the observed rejection rates in perspective, it is useful to note that population

heterogeneity can be a result of either random population effects or the presence of

moderators (or a combination of both) and that the rejection rates of the homogeneity

tests should be roughly the same regardless of the true source of the heterogeneity

as long as the amount of heterogeneity is the same. We can define the amount of

heterogeneity in a particular set of effect sizes as
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s 2
u ¼

Pk
i¼1ðui 2 
uÞ2

k
: ð29Þ

Now take, for example, the case where the set of studies can be split into two groups

based on some dichotomousmoderator variable. For instance, random assignmentmight

have been used in only some of the studies, or two different types of outcome measures

employed in the studies. Both of these are typical moderator variables used in meta-

analysis that might influence the size of the true effect. Moreover, assume that the

population effect size does depend on the level of this moderator variable and that,
within each group, the effect sizes are homogeneous. The appropriate model is then

given by

ESi ¼ ui þ 1i; ð30Þ

with ui ¼ u1 for i ¼ 1; : : : ; k1 and ui ¼ u2 for i ¼ k1 þ 1; : : : ; k. When the two

groups are of equal size and k is even, then (29) is equal to ððu1 2 u2Þ=2Þ2, or in
words, the squared mean difference between the two population effect sizes. From

this it follows that ju1 2 u2j ¼ 2
ffiffiffiffiffiffi
s 2

u

p
. Note that we have to attach a slightly different

interpretation to the amount of heterogeneity in this scenario. Specifically, s 2
u no

longer describes the variance of random population effects, but rather characterizes

the degree of departure from homogeneity as a result of fixed differences in the

population effect sizes.

The probability of the homogeneity tests detecting the presence of such a moderator

can be determined from the results of the present study. For example, Figure 4(e) shows

the rejection rates of the various tests as a function of s 2
u for 20 SMDs derived from

studies with an average of 40 observations per group. To obtain a rejection rate around

.80 with the Q, LR, and score tests, s 2
u must exceed roughly 0.075. This is equivalent to

ju1 2 u2j . :55 under the dichotomous moderator case. A difference of 0.55 is quite

substantial for SMDs, when considering that .2, .5, and .8 have conventionally been

described as small, medium, and large effect sizes (Cohen, 1988). For raw correlation

coefficients, we see based on Figure 7(d) that s 2
u would have to exceed about 0.025 to

obtain power values equal to .80 for k ¼ 20 and 
ni ¼ 40 (leaving aside the issue that the

Type I error rate is somewhat inflated for the Q, LR, and Wald tests). This translates into

ju1 2 u2j . 0:32, which is also a substantial difference considering the conventional

definition of .1, .3 and .5 as small, medium, and large effects for this effect size measure

(Cohen, 1988). Obviously, for larger values of k and/or 
ni, smaller values of ju1 2 u2j are
needed in order to obtain adequate rejection rates.

In general, we can estimate the value of s 2
u or ju1 2 u2j needed in order to

achieve a certain rejection rate based on the simulation results. Table 3 indicates the

minimum value of ju1 2 u2j that would lead to rejection of the null hypothesis in 80%

of the cases for the Q test as a function of k and 
ni (the entries are approximations

based on interpolation).5 The results for the LR and score tests were very similar to

those of the Q test. On the other hand, ju1 2 u2j would have to be substantially larger

for the Wald tests.

5 As discussed earlier, the Type I error rate was not always controlled adequately for some conditions, in particular when n̄i was
small. This explains why the entries for ri are smaller than those for zri in some cases.
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8. Conclusion

During the data-analytic step in meta-analysis, the researcher is faced with the difficult

problem of having to determine the appropriate model underlying a set of effect size
estimates. This process is usually of an exploratory nature and typically commences

with an examination of the homogeneity of the effect sizes. Since effect size estimates

are subject to sampling error, the goal is to determine whether any additional

variability over and beyond that expected solely due to sampling error is present in

the data.

Two approaches are commonly used for this purpose. In the first approach, we

estimate the amount of population heterogeneity with one of the heterogeneity

estimators that have been described in the literature (Viechtbauer, 2005). If the
heterogeneity estimate is found to be greater than zero, we reject the fixed-effects

model and can either adopt a random-effects model, search for moderators, or use a

Table 3. Minimum value of ju1 –u2j needed to obtain a rejection rate of at least .80 with the Q testa

k

Effect size 
ni 5 10 20 40 80

UMD 20 1.71 1.31
40 1.61 1.25 0.96
80 1.54 1.16 0.90 0.69
160 1.68 1.09 0.83 0.66 0.63
320 1.19 0.78 0.65 0.63 0.63
640 0.84 0.65 0.63 0.63 0.63

SMD 20 0.60 0.51
40 0.55 0.42 0.34
80 0.51 0.38 0.30 0.26
160 0.54 0.36 0.28 0.20 0.18
320 0.38 0.26 0.19 0.18 0.18
640 0.28 0.19 0.18 0.18 0.18

ri
b 20 0.359 0.228 0.104

40 0.317 0.235 0.171
80 0.332 0.240 0.182 0.139
160 0.359 0.247 0.176 0.134 0.126
320 0.271 0.176 0.132 0.126 0.126
640 0.185 0.134 0.126 0.126 0.126

zri 20 0.373 0.307
40 0.343 0.265 0.214
80 0.317 0.240 0.185 0.146
160 0.347 0.224 0.169 0.134 0.126
320 0.247 0.161 0.131 0.126 0.126
640 0.173 0.130 0.126 0.126 0.126

Note. UMD ¼ unstandardized mean difference; SMD ¼ standardized mean difference; ri ¼ raw
correlation coefficient; zri ¼ correlation coefficient with Fisher transformation.
aEmpty cells indicate cases where the value of ju1 2 u2j needed to obtain rejection rates of at least .80
was larger than those included in the simulations.
bFor mu ¼ 0.
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combination of these two explanations to account for the heterogeneity

(e.g. Berkey et al., 1995; Thompson & Sharp, 1999; van Houwelingen, Arends, &

Stijnen, 2002).

Alternatively, in the second approach, we apply a homogeneity test and only

adopt a random-effects model or search for moderator variables when the hypothesis

of homogeneity is rejected. However, this approach has been criticized by the
National Research Council (1992) on the basis that ‘the current practice of assuming

a fixed effects model : : : [unless] a significance test of the nonhomogeneity of

information sources rejects the hypothesis of homogeneity, is inefficient and can lead

to understatement of uncertainty about the underlying effect of interest’ (p. 186).

This assertion was shown to have some merit in particular by the results of

Brockwell and Gordon (2001). The alternative seems to be the first approach, which

rejects the homogeneity assumption whenever any amount of heterogeneity is

present in the data.
Heterogeneity estimates greater than zero can indicate either the presence of

heterogeneous population effect sizes, the presence of moderators, or a

combination of both (Lipsey & Wilson, 2001). However, a fourth explanation for

non-zero estimates of s 2
u are random sampling fluctuations. This is what Hunter and

Schmidt (1990) called second-order sampling error, meaning sampling variability in

meta-analytic estimates of the population effect size (i.e. mu or u) and population

heterogeneity (i.e. s 2
u). Second-order sampling error can lead to estimates of s 2

u

being greater than zero even when the population effect sizes are actually
homogeneous.

Consequently, if estimates of s 2
u greater than zero send researchers on an

exploratory search for potential moderators, then the danger of committing Type I

errors during this process is increased. A homogeneity tests therefore serves a

similar purpose as the overall F-test in ANOVA or regression, protecting researchers

from conducting a large number of exploratory hypothesis tests that can lead to

Type I errors or, in the case of meta-analysis, to the discovery of spurious

moderators.
However, homogeneity tests are only useful if they provide results that can be

trusted. Two criteria by which we may judge the quality of a test are adequate

control of the Type I error rate and sufficient sensitivity to detect departures from

the null hypothesis under realistic conditions.6 The present results demonstrate that

the Q test adequately controls the Type I error rate for meta-analyses based on

studies with at least moderately large sample sizes. Whether the power to detect

heterogeneity is sufficient in any particular meta-analysis depends on the number

of effect sizes, the sample sizes within the studies, and the actual amount of
heterogeneity one would like to detect. Therefore, it is an oversimplification to

simply claim that the heterogeneity tests have insufficient power. The present

results are useful in pointing out some of the specific conditions under which the

results of the homogeneity tests are reliable (i.e. where the Type I error rate is

controlled and power is sufficiently large). These results can help meta-analysts

decide with how much conviction one can accept the results from a homogeneity

test.

6 Robustness to violations of the assumption underlying the test would be a third criterion, which is beyond the scope of the
present paper, but see Harwell (1997) for some results relevant to this issue.
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