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Standardized effect sizes and confidence intervals thereof are extremely useful
devices for comparing results across different studies using scales with incom-
mensurable units. However, exact confidence intervals for standardized effect
sizes can usually be obtained only via iterative estimation procedures. The pre-
sent article summarizes several closed-form approximations to the exact con-
fidence interval bounds in the two-independent and two-dependent samples
design. Monte Carlo simulations were conducted to determine the accuracy
of the various approximations under a wide variety of conditions. All methods
except one provided accurate results for moderately large sample sizes and con-
verged to the exact confidence interval bounds as sample size increased.
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Introduction

There is a growing consensus that all null hypothesis significance tests should be

supplemented with effect size estimates and confidence intervals (e.g., American

Psychological Association, 2001; Cohen, 1994; Cumming & Finch, 2001; Hyde,

2001; Kirk, 1996; Schmidt, 1996; Thompson, 2002; Wilkinson & APA Task

Force on Statistical Inference, 1999). Procedures for obtaining confidence intervals

(CIs) in the raw (unstandardized) units for the two-independent and two-dependent

samples design are covered in most introductory textbooks on statistics, commonly

known to researchers, and implemented in statistical software packages. However,

the units of the measurement scales used by researchers are often chosen arbitrarily.

Reporting effect sizes and corresponding CIs in standardized units allows compari-

sons between measurements on scales that use incommensurable units.

For example, Marcus, Marquis, and Sakai (1997) conducted a study to inves-

tigate the effectiveness of eye movement desensitization and reprocessing

(EMDR), a controversial treatment for a variety of psychological disorders
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including posttraumatic stress disorder (PTSD). Patients in the EMDR group

scored on average 19:76 points below patients in a standard care (SC) group fol-

lowing treatment, as measured by the modified PTSD Symptom Scale. Another

study investigating EMDR treatment for PTSD was conducted by Carlson,

Chemtob, Rusnak, Hedlund, and Muraoka (1998). Here, the mean difference

between the EMDR and a control condition amounted to 3:2 points on a self-

report measure devised by the authors of this study.

Those two outcomes are not directly comparable because the scales are based

on a different number of items and scoring criteria. A common solution is to

standardize the mean difference by the pooled standard deviation of the two

groups. Doing so yields standardized mean differences of 0:76 and 1:33 points

in the first and second study, respectively. In other words, the EMDR group

scored 0:76 standard deviations below the SC group in the study by Marcus

et al. (1997), whereas Carlson et al. (1998) found a difference of 1:33 standard

deviations between the two groups. The differences in treatment efficacy between

the two studies are now more apparent. Moreover, CIs can be used to indicate the

precision of these effect size estimates. The corresponding 95% CIs are given by

(0:26; 1:25) and (0:39; 2:25), respectively.

Obtaining exact CIs in standardized units usually requires the use of noncen-

tral distributions and iterative estimation procedures (Cumming & Finch, 2001;

Hedges & Olkin, 1985; Smithson, 2003a; Steiger & Fouladi, 1997). At the time

of this writing, the methods required to find exact CIs are not covered in most

textbooks, are not commonly known to researchers, and have not been imple-

mented in most statistical analysis software. In an effort to address this problem,

six articles published in the August 2001 issue of Educational and Psychologi-

cal Measurement (Thompson, 2001) provided researchers with the necessary

information to calculate effect sizes and CIs for a wide variety of experimental

designs. In addition, a monograph dealing with CIs based on central and non-

central distributions was published recently (Smithson, 2003a). The article by

Steiger and Fouladi (1997) also provides an excellent introduction to this topic.

Finally, specialized software and scripts to be used in conjunction with standard

statistical software packages are available (Cumming, 2003; Smithson, 2003b).

Researchers can either familiarize themselves with the specialized tools or

rely on various approximate methods based on central distributions and closed-

form expressions to calculate CIs for standardized effect sizes. Numerous such

approximations have been suggested in the literature. The purpose of the present

article is to examine the accuracy of such approximations in the context of the

two-independent and the two-dependent samples design.

The Two-Independent Samples Design

In the two-independent samples design, participants are randomly assigned to

an experimental (E) or a control (C) group. Assume that the scores within each

group are sampled from normal distributions with expectations mE and mC and
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common variance s2. The null hypothesis H0: mE � mC ¼ 0 (i.e., the absence

of a difference in the population means) can be tested with the familiar two-

independent samples t test.

This null hypothesis significance test provides us with a simple dichotomous

decision rule, namely, whether to reject H0 or not, but neither informs us about

the direction, magnitude, or precision of the measured effect. Clearly, �XE� �XC

provides an unbiased estimate of mE � mC, where �XE and �XC denote the sample

means of the nE and nC scores in the two groups. The precision of this estimate

can be indicated by a ð1� aÞ× 100% CI for mE � mC, given by

�XE � �XC ± tðnEþnC�2Þ;1�a=2sp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nE
þ 1

nC

� �s
; ð1Þ

where tm;1�a=2 denotes the 100× ð1� a=2Þth quantile of a central t distribution

with m degrees of freedom and s2
p the pooled variance of the two groups.

In the ideal case where one is investigating a particular outcome variable

whose raw units can be compared across related experiments, the unstandar-

dized mean difference mE � mC represents a reasonable choice for the popu-

lation effect size. However, as discussed earlier, the measurement units are

often chosen arbitrarily. Therefore, working with standardized units can be more

informative as this allows comparisons of parameter estimates across scales

using different units. The population effect size is then defined as

d2 ¼
mE � mC

s
; ð2Þ

which reflects the difference in the population means in standard deviation units.

An estimate of d2 is given by

d2 ¼
�XE � �XC

sp
: ð3Þ

However, d2 is a positively biased estimator of d2. The bias of d2 was first

demonstrated by Hedges (1981), who also derived the unbiased estimator

g2 ¼ cðmÞ
�XE � �XC

sp

� �
; ð4Þ

where

cðmÞ ¼
G m

2

� �
ffiffiffi
m
2

p
G m�1

2

� � ≈ 1� 3

4m� 1
: ð5Þ
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Based on Hedges (1981, 1982, 1983), we note the following set of results. The

exact variances of d2 and g2 are given by Equations 21 and 22 in Table 1. How-

ever, s2
d2

and s2
g2

depend on the unknown value d2, which in practice is replaced

by either d2 or g2, leading to estimates ŝ2 ðBÞ
d2

and ŝ2 ðBÞ
g2 (Equations 23 and 24).

This introduces a certain amount of bias into the estimated sampling variances

because E½d2
2 � 6¼ E½g2

2� 6¼ d2
2. Unbiased estimates of s2

d2
and s2

g2
, denoted by

ŝ2ðUÞ
d2

and ŝ2 ðUÞ
g2

, are given by Equations 25 and 26. Finally, d2 and g2 are asymp-

totically normal with mean d2 and variance 1=~nþ d2
2=ð2mÞ, where ~n ¼ nEnC=

ðnE þ nCÞ. Replacing the unknown value of d2 by either sample estimate leads to

ŝ2 ðL1Þ
d2

and ŝ2 ðL1Þ
g2 , the large sample variance estimators (Equations 28 and 29).

However, in the literature, one usually finds m replaced with the total sample size

N ¼ nE þ nC in Equation 27. This leads to the large sample estimators ŝ2 ðL2Þ
d2

and ŝ2 ðL2Þ
g2 (Equations 30 and 31).

The Two-Dependent Samples Design

Researchers often choose to measure the same set of n participants on two dif-

ferent occasions, such as before and after receiving some treatment. Because the

same group of participants is measured twice, the two sets of scores are no longer

independent. Assume that the scores X1 and X2 obtained at Time 1 and Time 2 are

sampled from normal distributions with expected values m1 and m2 and common

variance s2. Now define the random variable D ¼ X2 �X1. It follows that D is

normally distributed with expected value mD ¼ m2 � m1 and variance s2
D ¼ 2s2

ð1� rÞ, where r is the correlation between the scores at Time 1 and Time 2.

The null hypothesis H0: m2 � m1 ¼ 0 (i.e., H0: mD ¼ 0) can be tested by car-

rying out a one-sample t test on the D scores. The value of mD ¼ m2 � m1 is

easily estimated with �D ¼ �X2� �X1, with a ð1� aÞ× 100% CI given by

�D± tðn�1Þ;1�a=2

sDffiffiffi
n
p ; ð6Þ

where s2
D is the observed variance in the D scores.

Again, we would like to obtain a standardized point estimate. Two different stan-

dardized parameters have been suggested in the literature (Becker, 1988; Gibbons,

Hedeker, & Davis, 1993; Morris, 2000; Morris & DeShon, 2002), namely,

dD ¼
mD
sD

¼ m2 � m1

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� rÞ

p ; ð7Þ

based on the standard deviation in the D scores, and

dD2 ¼
mD
s
¼ m2 � m1

s
; ð8Þ
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which is of the same form as d2 defined in Equation 2 for the two-independent

samples design. When r ¼ :5, then dD ¼ dD2. However, in many cases, one

would expect the correlation between the scores at the two occasions to be greater

than .5, which implies dD > dD2 (see Ray & Shadish, 1996, for some empirical

evidence relevant to this issue). Simply assuming that r ¼ :5 is not recommended,

and estimates of dD are therefore not directly comparable to estimates of dD2.

If dD is chosen as the effect size parameter of interest, then biased and

unbiased estimates are given by

dD ¼
�D

sD
ð9Þ

and

gD ¼ cðmÞ
�D

sD

� �
; ð10Þ

TABLE 1
Variances and Variance Estimators in the Two-Independent Samples Case (δ2)
and the Two-Dependent Samples Case (δD)

Note Equation

s2
d ¼

m½1þ ~nd2�
ðm� 2Þ~n �

d2

½cðmÞ�2
Exact variance of d (21)

σ2
g ¼
½cðmÞ�2m½1þ ~nδ2�
ðm� 2Þ~n � δ2 Exact variance of g (22)

σ̂
2 ðBÞ
d ¼ m½1þ ~nd2�

ðm� 2Þ~n �
d2

½cðmÞ�2
Biased Estimate of σ2

d (23)

σ̂2 ðBÞ
g ¼ ½cðmÞ�

2
m½1þ ~ng2�

ðm� 2Þ~n � g2 Biased estimate of σ2
g (24)

σ̂
2 ðUÞ
d ¼ 1

~n½cðmÞ�2
þ 1� ðm� 2Þ

m½cðmÞ�2
� �

d2 Unbiased estimate of σ2
d (25)

σ̂2 ðUÞ
g ¼ 1

~nþ 1� ðm� 2Þ
m½cðmÞ�2

� �
g2 Unbiased estimate of σ2

g (26)

σ
2 ð∞Þ
d=g ¼ 1

~nþ
d2

2m
Large sample variance (27)

σ̂
2 ðL1Þ
d ¼ 1

~nþ
d2

2m
Estimate of σ

2 ð∞Þ
d=g (28)

σ̂2 ðL1Þ
g ¼ 1

~nþ
g2

2m
Estimate of σ

2 ð∞Þ
d=g (29)

σ̂
2 ðL2Þ
d ¼ 1

~nþ
d2

2N
Estimate of σ

2 ð∞Þ
d=g (30)

σ̂2 ðL2Þ
g ¼ 1

~nþ
g2

2N
Estimate of σ

2 ð∞Þ
d=g (31)

Note: cðmÞ is defined in Equation 5. In the two-independent samples case, d ¼ d2, g ¼ g2, d ¼ d2,

~n ¼ nEnC=ðnE þ nCÞ, m ¼ nE þ nC � 2, and N ¼ nE þ nC. In the two-dependent samples case with

parameter dD, d ¼ dD, g ¼ gD , d ¼ dD , ~n ¼ n, m ¼ n� 1, and N ¼ n.
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respectively, where m ¼ n� 1. The exact variances and variance estimates for

these effect sizes are given in Table 1 with ~n ¼ n and N ¼ n (Becker, 1988;

Gibbons et al., 1993; Morris, 2000; Morris & DeShon, 2002).

Working with dD2 is usually preferable because it is directly comparable to d2

from two-independent samples designs. However, estimating dD2 from depen-

dent samples data poses some additional difficulties. Naturally, one might con-

sider estimators of the form given by d2 and g2 (Equations 3 and 4) to be

appropriate here. The problem with this approach is that their exact distributions,

expected values, and variances are unknown. Instead, the estimators

dD2 ¼
�D

s1

ð11Þ

and

gD2 ¼ cðmÞ
�D

s1

� �
ð12Þ

have been suggested in the literature and are biased and unbiased estimators of

dD2, respectively, where m ¼ n� 1 and s1 is the pretreatment standard deviation

(Becker, 1988; Morris, 2000; Morris & DeShon, 2002). The exact variance of

dD2 and gD2 and the large sample approximations are given in Table 2 (Becker,

1988; Morris & DeShon, 2002). In addition, biased estimates of the exact sam-

pling variance are obtained by replacing the parameter dD2 by either dD2 or gD2

and r by the sample correlation r. Unbiased estimates of the exact sampling

variance can also be derived and are given in Table 2 (Equations 36 and 37).

Note that one must use an unbiased estimate of r in Equations 36 and 37 to

obtain unbiased estimates of the sampling variances of dD2 and gD2. An unbiased

estimate of r, derived by Olkin and Pratt (1958), is given by

ru ¼ r F
1

2
;
1

2
;
n� 2

2
; 1� r2

� �
; ð13Þ

where

Fða; b; g; xÞ ¼
X∞
j¼0

Gðaþ jÞGðbþ jÞGðgÞ
GðaÞGðbÞGðgþ jÞ

xj

j!
ð14Þ

denotes the hypergeometric function. Olkin and Pratt also suggested

ru ≈ rþ rð1� r2Þ
2ðn� 4Þ ð15Þ

as a simple yet accurate approximation to the unbiased estimator of r.
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Confidence Intervals for δ

In the following sections, d refers to one of the three different effect size

parameters discussed previously, namely, d2, dD, or dD2. We will now consider

methods for finding a CI for d. Finding the exact CI bounds for d is problematic

because the shape of the distribution of d and g depends directly on the para-

meter for which the interval is being constructed. Therefore, the CI cannot be

given as a closed-form expression.

Iterative methods to find the exact CI for the two-independent and two-

dependent samples design with parameter dD have been discussed in the literature

(Cumming & Finch, 2001; Hedges & Olkin, 1985; Smithson, 2003a; Steiger &

Fouladi, 1997). Exact CI bounds for the two-dependent samples design with para-

meter dD2 can also be obtained when r is known by multiplying the bounds for

dD by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� rÞ

p
. However, in practice, r must be estimated from the data. The

TABLE 2
Variances and Variance Estimators in the Two-Dependent Samples Case (δD2)

Note Equation

s2
d ¼

m½2ð1� rÞ þ nd2�
ðm� 2Þn � d2

½cðmÞ�2
Exact variance of d (32)

s2
g ¼
½cðmÞ�2m½2ð1� rÞ þ nd2�

ðm� 2Þn � d2 Exact variance of g (33)

ŝ2 ðBÞ
d ¼ m½2ð1� rÞ þ nd2�

ðm� 2Þn � d2

½cðmÞ�2
Biased estimate of s2

d (34)

ŝ2 ðBÞ
g ¼ ½cðmÞ�

2
m½2ð1� rÞ þ ng2�
ðm� 2Þn � g2 Biased estimate of s2

g (35)

ŝ2 ðUÞ
d ¼ 2ð1� ruÞ

n½cðmÞ�2
þ 1� ðm� 2Þ

m½cðmÞ�2
� �

d2 Unbiased estimate of s2
d (36)

ŝ2 ðUÞ
g ¼ 2ð1� ruÞ

n þ 1� ðm� 2Þ
m½cðmÞ�2

� �
g2 Unbiased estimate of s2

g (37)

s2 ð∞Þ
d=g ¼ 2ð1� rÞ

n þ d2

2m
Large sample variance (38)

ŝ2 ðL1Þ
d ¼ 2ð1� rÞ

n þ d2

2m
Estimate of s2 ð∞Þ

d=g (39)

ŝ2 ðL1Þ
g ¼ 2ð1� rÞ

n þ g2

2m
Estimate of s2 ð∞Þ

d=g (40)

ŝ2 ðL2Þ
d ¼ 2ð1� rÞ

n þ d2

2n
Estimate of s2 ð∞Þ

d=g (41)

ŝ2 ðL2Þ
g ¼ 2ð1� rÞ

n þ g2

2n
Estimate of s2 ð∞Þ

d=g (42)

Note: cðmÞ is defined in Equation 5. In the two-dependent samples case with parameter dD2,

d ¼ dD2, g ¼ gD2, d ¼ dD2, and m ¼ n� 1. r is the sample correlation coefficient, and ru is the

unbiased estimate of the population correlation r as defined in Equation 13.
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additional variability in estimates of r must be considered when using an iteration

procedure to find the exact CI for dD2. No such method has been developed yet.

We will now consider several approximations to the exact CI bounds. Let

q be equal to the 100× ð1� a=2Þth quantile of either the standard normal or the

central t distribution with m degrees of freedom. Approximate ð1� aÞ× 100%
CIs for d are given by methods B, U, L1, and L2 as shown in Table 3. Two

different sets of approximations are given, depending on whether one uses the

biased or the unbiased estimate of the corresponding population parameter.

Also, one can use either the normal distribution or the t distribution to construct

such approximate CIs. Use of the normal distribution for obtaining CIs can be

justified based on the fact that d and g are asymptotically normal with expecta-

tion d and variances given by Equations 27 or 38. On the other hand, when

d ¼ 0, then
ffiffiffi
~n
p

d and cðmÞ�1
ffiffiffi
~n
p

g are distributed central t with m degrees of

freedom, which suggests use of the t distribution for small d.

Another approach to obtain approximate CI bounds for d is to first use a vari-

ance stabilizing transformation. The variance stabilizing transformation for the

standardized mean difference, as suggested by Hedges and Olkin (1985), is here

generalized to include the two-dependent samples design. Based on the delta

method, the random variable

zg ¼ hðgÞ ¼
ffiffiffi
2
p

sinh�1 g

a
¼

ffiffiffi
2
p

log
g

a
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

a2
þ 1

r !
ð16Þ

can be shown to be asymptotically normal with expectation hðdÞ and variance

1=N, where a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 2ðnE=nCÞ þ 2ðnC=nEÞ

p
in the two-independent samples

case, a ¼
ffiffiffi
2
p

in the two-dependent samples case with parameter dD, and a ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð1� rÞ

p
in the two-dependent samples case with parameter δD2. Therefore, one

calculates the lower and upper bounds of a CI using the distribution of zg with

zg ± q× ffiffiffiffiffiffiffiffiffi
1=N

p
ð17Þ

and then transforms these bounds back to the original metric with

g ¼ h�1ðzgÞ ¼ a sinh
zgffiffiffi

2
p
� �

¼ a
exp½zg=

ffiffiffi
2
p
� � exp½zg=

ffiffiffi
2
p
�

2

� �
; ð18Þ

the inverse function of hðgÞ. This method (denoted by the letter H) could also

be applied using the biased estimate d in place of g.

Finally, Fidler and Thompson (2001) suggested that a CI for d2 in the two-

independent samples design could be approximated by dividing each XE and

XC score by sp and obtaining a CI for the raw mean difference as described by

Equation 1 using the transformed data. It is easy to show that this method is
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identical to dividing the CI bounds for mE � mC obtained from Equation 1 by sp.

A similar approach was also discussed by Bird (2002). However, after dividing

Equation 1 by sp, we obtain d2 ± tðnEþnC�2Þ;1�a=2

ffiffiffiffiffiffiffiffi
1=~n

p
. This in turn reveals that

the Fidler and Thompson approach is essentially the same as using the biased

estimate d2 and constructing a CI based on the t distribution and the large

sample variance s2 ð∞Þ
d=g (Equation 27) where d2 is assumed to be zero. The same

principle could be extended to the two-dependent samples design where a CI

for dD is sought by dividing the CI bounds for mD obtained from Equation 6 by

sD. Finally, dividing the CI bounds for mD obtained from Equation 6 by

sD=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� rÞ

p
would provide an approximate CI for dD2. This method of finding

approximate CIs for d will be denoted by the letter F .

In total, this yields 21 different approximations (see again Table 3). Specifically,

methods B, U, L1, L2, and H can either be based on d or g and can either employ

critical values from the normal or the t distribution, whereas method F is by default

always based on d and the t distribution. The letter z or t will be appended to the

name of the approximation to indicate which distribution was used. For example,

method B based on g and the normal distribution will be denoted by gBz.

TABLE 3
Methods to Obtain Approximate Confidence Intervals for d

Method

gB g± q× ŝðBÞg

dB d± q× ŝðBÞd

gU g± q× ŝðUÞg

dU d± q× ŝðUÞd

gL1 g± q× ŝðL1Þ
g

dL1 d± q× ŝðL1Þ
d

gL2 g± q× ŝðL2Þ
g

dL2 d± q× ŝðL2Þ
d

gH h�1ðzg ± q× ffiffiffiffiffiffiffiffiffi
1=N

p
Þ

dH h�1ðzd ± q× ffiffiffiffiffiffiffiffiffi
1=N

p
Þ

Equation 1 divided by sp (two-independent samples case)

F Equation 6 divided by sD (two-dependent samples case with dD)

Equation 6 divided by sD=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� rÞ

p
(two-dependent samples case with dD2)

Note: See text for details. q is the 100× ð1� a=2Þth quantile of either the standard normal distribu-

tion or the central t distribution with m degrees of freedom.
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Examples

Three examples will illustrate the various approximations discussed in the

previous section. First, consider the two-independent samples case. Assume that

(25, 19, 21, 14, 16, 23, 24, 24, 22, 22) and (28, 26, 27, 19, 23, 29, 25, 31, 32, 30)

represent test scores from students randomly assigned to a control and an experi-

mental group, respectively, in an experiment investigating the impact of a new

teaching technique on students’ performance. The mean difference in test scores

between the two groups is 6:0 points with a 95% CI given by (2:44; 9:56).

To obtain the standardized estimate g2, we use Equation 4 with m ¼ 18 and

cð18Þ ¼ :96. In standardized units, it turns out that the students in the experi-

mental group scored g2 ¼ 1:52 standard deviations above the control group.

Using iterative estimation procedures, we find that an exact 95% CI for d2 is

given by (:55; 2:58).

We now compare the exact CI with the approximate CI bounds obtained by the

methods discussed earlier (for conciseness, the examples in this section will be

based on the normal distribution and g only). For method gBz, we first calculate

ŝ2 ðBÞ
g (Equation 24), which is equal to :28. Next, we find that 1:52± 1:96× ffiffiffiffiffiffiffi

:28
p

provides approximate CI bounds (:48; 2:55). For method gUz, we find that σ̂
2ðUÞ
g

is equal to :27 and 1:52± 1:96× ffiffiffiffiffiffiffi
:27
p

then provides the approximate bounds

ð:50; 2:54Þ. Continuing with methods gL1z and gL2z, we find the CI bounds to be

equal to ð:51; 2:52Þ and ð:52; 2:51Þ, respectively. For the variance stabilizing trans-

formation (method gHz), we use Equation 17 with a ¼
ffiffiffi
8
p

and obtain zg ¼ :73.

We then calculate the CI in the transformed units with Equation 17, yielding

:73± 1:96× ffiffiffiffiffiffiffiffiffiffi
1=20

p
¼ ð:29; 1:16Þ. Transforming these bounds back into the ori-

ginal units using Equation 18 results in (:58; 2:60). Finally, for method F, we divide

the bounds of the CI based on the raw units by sp ¼ 3:79, yielding (:65; 2:52).

Next, consider the dependent samples case where interest is focused on dD.

Assume that the scores given earlier were obtained from 10 participants tested

before and after receiving some treatment. The change scores D ¼ X2 �X1 are

equal to (3, 7, 6, 5, 7, 6, 1, 7, 10, 8). The unstandardized mean difference is esti-

mated by �D, which is 6.0 as in the two-independent sample case. A 95% CI for mD,

obtained with Equation 6, yields the bounds (4:18; 7:82). Because the scores are

highly correlated (r ¼ :78), this CI is narrower than the one obtained from the same

data when treating the two sets of scores as coming from two independent samples.

Using Equation 10 with m ¼ 9 and cð9Þ ¼ 0:91, we find gD ¼ 2:16. An exact

CI for dD is given by (1:11; 3:59). Approximate 95% CIs are obtained in the

same manner as before except that ~n ¼ n ¼ 10, N ¼ n ¼ 10, and a ¼
ffiffiffi
2
p

. The

approximate bounds are equal to (:84; 3:48) using method gBz, (:89; 3:43) using

method gUz, (:99; 3:33) using method gL1z, (1:03; 3:29) using method gL2z,

(1.20, 3.54) using method gHz, and (1:65; 3:08) using method F.

As a final example, consider the case where an estimate and CI for dD2 is

sought. Using Equation 12 with m ¼ 9 and cð9Þ ¼ 0:91, we find gD2 ¼ 1:51.

An exact CI for dD2 is obtained by multiplying the bounds for dD, namely,
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(1:11; 3:59), by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� rÞ

p
. The scores given earlier were drawn from a popula-

tion where r ¼ :80, and therefore, the exact CI for dD2 is given by (:70; 2:27).

Method gBz in this case is based on Equation 35, which yields an approximate

CI of (:60; 2:43). Continuing through the list of variance estimates in Table 2 and

approximation methods in Table 3, we obtain the bounds (:64; 2:38) with method

gUz, (:70; 2:33) with method gL1z, and (:73; 2:30) with method gL2z. Method

gHz, based on the variance stabilizing transformation, yields the approximate

bounds (:86; 2:47). And finally, an approximate CI is given by (1:11; 2:04) when

using method F.

The examples illustrate that the methods can differ widely in terms of how

well they approximate the exact CI bounds. Hedges (1982) studied method

gL2z in the two-independent samples design (using sample sizes in the range

10≤ nE ¼ nC ≤ 100 and values of d2 between 0:25 and 1:50) and found the

approximation to be quite accurate. Morris (2000) studied method dUz in

the two-dependent samples design with parameter dD2. However, dD2 and r were

treated as known in the simulations, which bears little relevance to practice,

where only sample estimates of dD2 and r are available. It is still unknown how

well CIs based on the remaining methods approximate the exact CI bounds and

in particular, whether one method should be preferred over the others. Results

for unequal and very small sample sizes and values of jdj above 1:5 are also still

warranted. Finally, the two-dependent samples design with parameter dD has not

been studied at all so far. Therefore, Monte Carlo simulations were conducted to

compare the accuracy of the various approximations.

Method

Three sets of simulations were conducted. The first set of simulations cor-

responds to the two-independent samples case. Values of d2 between �2 and 2

in steps of :25, seven different CI widths (1� a ¼ :50, .60, .70, .80, .90, .95, and

.99.), and various sample size configurations were used: (a) equal sample sizes of

nE ¼ nC ¼ 4, 8, 16, 32, and 64 participants per group; (b) unequal sample sizes

with (nE; nCÞ ¼ ð2; 6Þ, (4, 12), (8, 24), (16, 48), and (32, 96), each corresponding

to a 25/75% split of participants; and (c) unequal sample sizes with (nE; nCÞ ¼ (2,

14), (4, 28), (8, 56), and (16, 112), each corresponding to a 12.5/87.5% split

of participants. Therefore, there were a total of 17 d2 × 14 sample size× 7

CI width ¼ 1; 666 conditions. On each of the 100,000 iterations for a particular

condition, a d2 value was directly simulated from Z=
ffiffiffiffiffiffiffiffiffiffi
X=m

p
, where Z is a

random normal variable with distribution Nðd2; 1=nE þ 1=nC) and X is a

random chi-square variable with m ¼ nE þ nC � 2 degrees of freedom. The

exact ð1� aÞ× 100% CI bounds for d2 were then determined using iterative

methods. Next, approximate CI bounds were obtained with each of the 21

methods discussed earlier.

The second set of simulations corresponds to the two-dependent samples case

with parameter dD. Because values of dD tend to be larger than d2 values, values
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of dD between �4 and 4 in steps of .50 were used. Five sample size conditions

(n ¼ 8, 16, 32, 64, and 128) were simulated. In total, this yields a total of

17dD × 5 sample size × 7 CI width ¼ 595 conditions. Again, 100,000 values of

dD were directly simulated for each condition from Z=
ffiffiffiffiffiffiffiffiffiffi
X=m

p
, where Z is a ran-

dom normal variable with distribution NðdD; 1=nÞ and X is a random chi-square

variable with m ¼ n� 1 degrees of freedom. Exact and approximate CI bounds

were then obtained for dD.

The third set of simulations corresponds to the two-dependent samples case

with parameter dD2. For each trial, two vectors of random standard normal data

were generated for various values of n with population correlation coefficient r
using the Cholesky decomposition. Next, a constant was added to one of the two

sets such that all values of dD2 between �2 and 2 in steps of :25 were repre-

sented in the simulations. Sample sizes of n equal to 8, 16, 32, 64, and 128 and

values of r equal to 0, .1, .3, .5, .7, and .9 were included in the simulations. This

yields a total of 17dD2 × 5 sample size× 6r× 7 CI width ¼ 3; 570 conditions.

After generating the data, dD2 and gD2 were calculated and the exact CI bounds

for dD2 were determined using iterative methods (assuming known r). Next,

approximate CI bounds for dD2 were obtained with each of the approximation

methods. The third set of simulations was based on 10,000 trials per condition

because simulating the raw data required substantially more computing time.

The accuracy of the various approximations was assessed with two measures:

the empirical coverage probability and the ratio of the length of the approximate

CI compared to the exact interval. Specifically, the empirical coverage probabil-

ity was estimated with

P̂ ¼ 1

R

XR
i¼1

IðĈLi
;ĈUi
Þ½d�; ð19Þ

where ĈLi
and ĈUi

denote the lower and upper CI bounds on the ith iteration,

IðĈLi
;ĈUi

Þ½d� ¼ 1 if d ∈ ðĈLi
; ĈUi
Þ and 0 otherwise, and R ¼ 100; 000 for the first

two sets of simulations, and R ¼ 10; 000 for the third set. The maximum stan-

dard error of the P̂ values is .002 for R ¼ 100; 000 and .005 for R ¼ 10; 000.

The empirical coverage probability indicates whether the approximation

captures the parameter as often as it should. On the other hand, the ratio of the

length of the approximate CI to the true CI indicates to what degree the width of

the true interval was over- or underestimated. The average width ratio for a par-

ticular method was estimated with

Ŵ ¼ 1

R

XR
i¼1

ðĈUi
� ĈLi

Þ
ðCUi

� CLi
Þ ; ð20Þ

where CLi
and CUi

are the lower and upper bounds of the exact CI.
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The error in the empirical coverage probability of an approximation is given

by P̂ � ð1� a). The error in the width ratio is given by Ŵ � 1. Because of the

large number of approximations considered in the present article, the methods

were first examined in terms of their maximum error in coverage probability

and width ratio. These values represent the worst-case results and allow us to

rule out methods that can yield grossly inaccurate approximations (the full set of

results can be obtained by contacting the author).

Results

Two-Independent Samples Design

The accuracy of methods B, U, L1, L2, and H depended only on the total sam-

ple size (N ¼ nE þ nC) and not on the proportion of scores falling into each

group. Also, all these methods converged to the nominal coverage probabilities

and interval widths as N increased, regardless of whether the method was based

on d2, g2, the normal, or the t distribution critical values. In fact, the maxi-

mum value of ðP̂ � ð1� aÞÞ× 100% over all conditions and methods (excluding

method F) was never larger than 6.5% for N ¼ 16, 3.0% for N ¼ 32, 1.5% for

N ¼ 64, and 1.0% for N ¼ 128. In terms of width ratios, convergence was some-

what slower. The maximum value of ðŴ � 1Þ× 100% was 28.6%, 11.9%, 5.5%,

and 2.6% for a total sample size of 16, 32, 64, and 128 participants, respectively.

The convergence of the empirical coverage probabilities of methods B, U,

L1, L2, and H to the nominal (1� a) values and CI widths was to be expected

due to three reasons. First, the distributions of d and g are asymptotically normal

with expectation d. Second, these methods are based on consistent variance esti-

mates. And finally, for large sample sizes, the normal and t distributions con-

verge, yielding very similar quantiles.

However, for small sample sizes, some approximations were noticeably more

accurate than others. Table 4 indicates the maximum value of ðP̂ � ð1� aÞÞ×
100% and ðŴ � 1Þ× 100% for each method and each CI width over all values of

d2 for N ¼ 8 in the equal sample size condition. Negative signs indicate underes-

timation of coverage probabilities and widths, whereas positive signs indicate

overestimation. The table shows that the approximate bounds based on the normal

distribution generally yielded more accurate results than the corresponding

bounds based on the t distribution, especially with respect to width ratios and

90% or wider CIs.

Table 4 also indicates that methods gUz, gL1z, dL1z, dL2z, gHz, and dHz

provided the most accurate results when considering empirical coverage prob-

abilities and width ratios simultaneously. To determine whether one of these

methods is the most accurate, one should examine individual values of P̂ and Ŵ

instead of focusing on the maximum errors as done in Table 4. Accordingly, the

empirical coverage probabilities and width ratios of these methods are plotted

by d2 values for the 95% CI condition in Figure 1 when N ¼ 8. In addition, the

Confidence Intervals for Standardized Effect Sizes

51



results for method F are shown to illustrate its distinctive performance. Clearly,

method dL1z provided the most accurate approximation to the exact CI bounds

for d2. Its width ratios were slightly above 1 but with no substantial impact on

coverage probabilities.

Method F showed a very different pattern of results when compared to the

other methods. At d2 ¼ 0, the empirical coverage probabilities were equal to the

nominal ð1� aÞ values for all sample sizes (even for N ¼ 8) and all values of

ð1� aÞ, although its width ratios were quite inaccurate. For larger values of

jd2j, P̂ fell below the nominal ð1� aÞ value, with no improvement in accuracy

TABLE 4
Maximum Error (in %) in Empirical Coverage Probabilities and Width Ratios Over
All Values of δ2 for N = 8 in the Two-Independent Samples Case (Equal Group Sizes)

Confidence

Interval

Coverage Probability Width Ratio

50% 70% 90% 95% 99% 50% 70% 90% 95% 99%

gBz 7.3 7.9 5.5 3.6 1.0 8.6 8.6 8.7 8.8 8.9

gBt 10.2 12.1 8.5 4.9 1.0 15.5 18.8 28.4 35.8 56.7

dBz 11.6 12.8 7.6 4.4 1.0 33.6 33.6 33.7 33.8 34.0

dBt 14.7 16.8 9.3 5.0 1.0 42.1 46.2 58.0 67.1 92.9

gUz 4.5 4.9 3.8 2.7 0.9 2.0 2.1 2.2 2.2 2.4

gUt 7.3 9.2 7.6 4.8 1.0 8.6 11.7 20.7 27.6 47.3

dUz 5.5 6.5 5.0 3.2 0.9 17.5 17.5 17.6 17.7 17.8

dUt 8.4 10.8 8.2 4.8 1.0 25.0 28.6 38.9 46.9 69.6

gL1z 4.1 4.0 2.6 1.6 0.6 −4.6 −4.6 −4.5 −4.4 −4.3

gL1t 6.9 8.2 6.5 4.3 1.0 5.4 8.4 17.1 23.7 42.7

dL1z −1.9 −2.1 −1.2 −0.5 0.4 0.9 0.9 1.0 1.1 1.2

dL1t 1.4 3.5 5.3 4.0 1.0 7.3 10.4 19.3 26.2 45.6

gL2z 3.9 3.5 1.7 0.9 0.2 −9.1 −9.1 −9.0 −9.0 −8.9

gL2t 6.7 7.6 5.7 3.9 1.0 4.5 7.5 16.0 22.6 41.4

dL2z −3.8 −3.9 −2.5 −1.7 −0.5 −4.7 −4.7 −4.6 −4.6 −4.4

dL2t −1.2 1.8 3.4 3.1 1.0 5.4 8.4 17.1 23.7 42.6

gHz 3.5 2.5 −1.7 −1.4 −1.1 −8.7 −8.1 −6.4 −5.3 5.2

gHt 6.2 6.4 4.2 2.6 0.8 5.1 8.9 20.7 30.4 62.5

dHz −4.0 −5.0 −4.9 −4.5 −2.9 −4.3 −3.6 −1.9 3.1 6.1

dHt −1.5 −0.7 1.1 0.9 0.5 6.0 9.9 21.7 31.6 63.9

F −9.4 −10.2 −7.5 −6.2 −3.4 −20.4 −18.0 12.8 19.2 37.4

Fa −8.4 −10.1 −8.2 −6.0 −2.6 −18.5 −18.4 −18.1 −17.9 −17.5

Fb −6.6 −8.1 −6.0 −4.5 −1.9 −14.8 −14.7 −14.4 −14.2 −13.7

Fc −4.2 −4.7 −3.7 −2.7 −1.0 −9.4 −9.3 −9.1 −8.8 −8.3

a. ðnE; nCÞ ¼ ð64; 64Þ.
b. ðnE; nCÞ ¼ ð32; 96Þ.
c. ðnE; nCÞ ¼ ð16; 112Þ.
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for larger sample sizes (see last rows in Table 4). This finding is not surprising as

method F essentially assumes that d2 is equal to zero. Therefore, no matter how

large N becomes, method F will not provide accurate results when d2 6¼ 0.

Finally, method F actually showed an increase in accuracy in the unequal sample
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FIGURE 1. Empirical coverage probability and width ratio in the two-independent
sample case for N ¼ 8 and 95% confidence intervals (CIs) (Equal Group Sizes).
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size conditions, with more extreme splits yielding more accurate P̂ values (again,

see last rows in Table 4).

Two-Dependent Samples Design With Parameter dD

All methods except F again converged to the correct coverage probabil-

ities and interval widths as sample size increased. Specifically, ðP̂ � ð1� aÞÞ×
100% never exceeded 7.6% when n ¼ 16, 3.9% when n ¼ 32, 2.1% when

n ¼ 64, and 1.1% when n ¼ 128 over all values of dD and ð1� aÞ for methods

B, U, L1, L2, and H. For n ¼ 16, 32, 64, and 128, the highest width ratio error

was 31.7%, 13.9%, 7.5%, and 3.9%, respectively. Table 5 provides the maxi-

mum value of ðP̂ � ð1� aÞÞ× 100% and ðŴ � 1Þ× 100% for each method and

TABLE 5
Maximum Error (in %) in Empirical Coverage Probabilities and Width Ratios Over
All Values of δD for n = 8 in the Two-Dependent Samples Case With Parameter δD

Confidence

Interval

Coverage Probability Width Ratio

50% 70% 90% 95% 99% 50% 70% 90% 95% 99%

gBz 5.9 6.8 4.5 3.1 0.9 8.4 8.6 9.2 9.6 10.6

gBt 8.3 10.3 7.5 4.7 1.0 14.3 17.3 25.8 32.3 50.3

dBz 13.0 14.1 7.9 4.4 1.0 36.1 36.3 37.1 37.6 38.8

dBt 15.7 17.3 9.2 4.9 1.0 43.4 47.2 57.9 66.0 88.6

gUz 3.5 4.4 3.1 2.3 0.8 3.2 3.4 3.9 4.3 5.2

gUt 6.0 8.0 6.6 4.4 1.0 8.8 11.6 19.7 25.8 43.0

dUz 5.5 6.7 4.8 3.2 0.8 16.1 16.4 17.0 17.4 18.5

dUt 8.0 10.4 7.7 4.6 1.0 22.5 25.7 34.8 41.7 61.0

gL1z −4.3 −4.8 −3.8 −2.9 −1.2 −9.0 −8.8 −8.3 −8.0 −7.2

gL1t 5.8 7.4 5.8 4.0 1.0 4.7 7.3 14.4 19.9 35.0

dL1z −1.6 −1.5 −0.9 0.8 0.4 1.1 1.4 1.9 2.3 3.2

dL1t 1.6 3.6 4.9 3.8 1.0 6.6 9.4 17.4 23.4 40.2

gL2z −6.7 −7.7 −6.1 −4.6 −2.0 −14.1 −14.0 −13.5 −13.2 −12.4

gL2t 5.7 7.1 5.4 3.7 1.0 −9.5 −7.1 14.0 19.4 34.5

dL2z −3.5 −3.4 −1.7 −0.9 −0.2 −4.7 −4.5 −4.0 −3.7 −2.9

dL2t −1.3 2.1 3.6 3.2 1.0 5.1 7.6 14.8 20.3 35.4

gHz −6.3 −6.6 −4.2 −2.5 −1.2 −13.7 −13.0 −11.1 −9.7 −6.2

gHt 5.2 6.0 3.8 2.5 0.7 −9.0 8.3 18.3 26.5 52.3

dHz −3.9 −4.5 −4.4 −3.9 −2.5 −4.3 −3.5 2.5 3.7 6.7

dHt −1.6 −1.1 1.1 1.0 0.5 5.6 9.0 19.1 27.4 53.4

F −32.7 −43.3 −46.1 −41.8 −28.0 −67.7 −66.9 −64.5 −62.7 −57.5

Fa −32.4 −43.2 −48.0 −46.7 −38.5 −66.8 −66.7 −66.6 −66.5 −66.2

a. n = 128.
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each CI width over all values of dD for n ¼ 8. The results are similar to those

from the two-independent samples case.

Figure 2 shows the empirical coverage probabilities and width ratios for

methods gUz, gL1z, dL1z, dL2z, gHz, dHz, and F for the 95% CI condition

−4 −2 0 2 4

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

δD

E
m

pi
ric

al
 C

ov
er

ag
e 

P
ro

ba
bi

lit
y

(a) Empirical Coverage Probability

gUz

dL1z

dL2z

gL1z

dHz

gHz

F

−4 −2 0 2 4

0.
94

0.
96

0.
98

1.
00

1.
02

1.
04

1.
06

δD

W
id

th
 R

at
io

(b) Width Ratio

gUz

dL1z

dL2z

gL1z

dHz

gHz

F

FIGURE 2. Empirical coverage probability and width ratio in the two-dependent
sample case with parameter dD for n ¼ 8 and 95% confidence intervals (CIs).
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when n ¼ 8, which again indicates that method dL1z performed favorably.

Because of the wider range of dD values considered in this set of simulations,

method F performed even worse when compared to the two-independent sam-

ples case and again showed no sign of improvement with larger sample sizes.

Two-Dependent Samples Design With Parameter dD2

Once again, all of the approximations except method F converged to the exact

CI bounds in terms of empirical coverage probabilities and widths. The lar-

gest error in the coverage probabilities amounted to 8.3% for n ¼ 16, 3.9% for

n ¼ 32, 2.7% for n ¼ 64, and 1.7% for n ¼ 128. For the width ratios, the largest

errors were 27.1%, 16.4%, 8.5%, and 4.4%, respectively. Table 6 provides the

maximum value of ðP̂ � ð1� aÞÞ× 100% and ðŴ � 1Þ× 100% for each method

over all values of dD2 and r in the two-dependent samples case when n ¼ 8. The

approximations were slightly less accurate than in the previous two sets of simu-

lations, which can be attributed to the additional error introduced by having to

estimate r. Methods gL1z, gL2z, dL2z, and gHz provided the most accurate

coverage probabilities and width ratios for small sample sizes.

Empirical coverage probabilities and width ratios for these four methods are

plotted in Figure 3 across individual values of dD2 for the 95% CI condition

when r ¼ :7 and n ¼ 8. Method dL1z, which provided the most accurate results

in the previous two sets of simulations, is also plotted for comparison purposes,

whereas method gHz was omitted, as it made the graphs difficult to read (it did

not provide more accurate results than the two methods discussed in the follow-

ing). Here, none of the methods could be considered generally superior in all

aspects. In fact, all of these approximations tended to capture the parameter not

often enough despite the fact that intervals provided by methods dL1z and dL2z

were usually too wide on average. Overall, methods gL1z and dL2z appear to be

most accurate in terms of interval widths while still providing quite accurate

coverage probabilities.

Discussion

Finding the exact CI for d requires iterative estimation procedures. However,

the present article shows that various approximate methods can be used without

concern as long as sample sizes are at least moderately large. On the other hand,

when sample sizes are small, then researchers can consult Tables 4, 5, and 6 when

choosing an approximation. These tables provide the maximum error over condi-

tions that are not under the control of the experimenter, namely, the true value

of d and the true value of r in the two-dependent samples case. In other words,

because these parameters are unknown in practice, one cannot pick a method that

would be optimal for particular d and r values. A reasonable alternative is a mini-

max approach, choosing a method that minimizes the maximum possible error.

Ideally, one method would be most accurate for all the designs considered.

Method dL1z was extremely accurate in the two-independent and two-dependent
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samples case with parameter dD. However, it did not perform quite as well in the

two-dependent samples case with parameter dD2, where methods gL1z and dL2z

provided the most accurate results. The results in the two-dependent samples

case were of particular interest because methods to find the exact CI of dD2 with-

out knowledge of r have not been developed yet. Therefore, researchers must

rely on approximations in practice and methods gL1z and dL2z are to be recom-

mended here. The fact that methods based on the large-sample variances provided

some of the most accurate approximations to the exact CI bounds is certainly a

welcomed finding because these methods are also the easiest to compute among

all the suggested approximations.

TABLE 6
Maximum Error (in %) in Empirical Coverage Probabilities and Width Ratios
Over All Values of δD2 and ρ for n = 8 in the Two-Dependent Samples

Case With Parameter δD2.

Confidence

Interval

Coverage Probability Width Ratio

50% 70% 90% 95% 99% 50% 70% 90% 95% 99%

gBz 5.7 5.4 3.1 1.7 −1.8 17.4 17.1 17.9 18.5 20.1

gBt 8.3 8.9 6.1 4.3 1.0 23.8 26.4 35.8 43.0 63.1

dBz 13.2 14.1 7.9 4.3 1.0 47.4 47.2 48.3 49.1 51.0

dBt 15.8 17.4 9.3 4.8 1.0 55.4 59.0 70.8 79.8 105.1

gUz 3.3 3.1 −3.2 −3.4 −2.8 11.0 10.8 11.6 12.2 13.7

gUt 5.9 6.6 5.1 3.8 1.0 17.8 20.3 29.2 36.1 55.2

dUz 5.1 6.8 4.6 2.9 −1.4 25.0 24.8 25.7 26.3 28.0

dUt 8.1 10.5 7.6 4.4 1.0 32.7 35.4 45.5 53.2 74.8

gL1z −4.3 −5.2 −−5.6 −4.1 −2.9 −3.6 −3.4 −3.2 −3.0 −3.3

gL1t 4.8 5.6 4.3 3.0 1.0 5.1 7.5 14.7 20.1 36.5

dL1z −4.1 −5.0 −4.4 −3.2 −1.8 9.6 9.2 10.0 10.5 12.0

dL1t 2.0 4.1 4.7 3.4 1.0 15.5 17.9 26.7 33.4 52.1

gL2z −6.5 −8.1 −7.7 −5.9 −3.5 −8.2 −8.0 −7.3 −7.2 −6.7

gL2t 4.5 5.4 3.9 2.7 1.0 4.7 7.0 13.6 19.1 35.1

dL2z −4.3 −5.5 −4.8 −3.8 −2.0 3.2 2.8 3.6 4.0 5.3

dL2t −2.1 −2.2 3.3 3.0 0.9 8.8 11.0 19.3 25.4 43.1

gHz −6.3 −6.9 −5.2 −3.5 −2.4 −7.7 −7.0 −4.6 −3.4 6.4

gHt 4.1 4.4 2.5 2.0 0.8 5.2 8.4 17.9 26.1 53.0

dHz −4.6 −6.5 −7.2 −6.3 −3.8 3.7 3.9 6.5 8.2 12.8

dHt −2.6 −3.2 −2.3 1.4 0.6 9.4 12.4 23.8 32.9 62.1

F −35.1 −47.5 −52.9 −49.9 −37.9 −69.1 −68.3 −66.0 −64.2 −59.1

Fa −33.6 −44.3 −51.2 −49.1 −40.9 −69.8 −69.8 −69.7 −69.6 −69.5

a. n = 128.
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A final word of caution is warranted when discussing standardized effect sizes.

The standardized effect size d is useful when comparing results from multiple

studies using measurement instruments whose raw units are not directly compar-

able. If the different instruments provide scores that are linear transformations of
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sample case with parameter δD2 for n = 8, ρ = .7, and 95% confidence intervals (CIs).
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each other, then standardizing the raw effect sizes allows comparisons across dif-

ferent instruments. The problem with standardized effect sizes is their depen-

dence on the amount of variability in the population. The problem is twofold.

First of all, d assumes homoscedasticity of the scores in the groups or across

repeated measures. When s is not homogeneous, use of d might be problematic.

However, using standardized units creates an even more notable problem

because d depends on the particular characteristics of the population being stu-

died, specifically, its variance (Cohen, 1994). In other words, two d or g values

for the same outcome measure obtained from two experiments could be incom-

mensurable if the samples were drawn from populations with unequal variances.

Cohen (1994) emphasized that researchers must begin to ‘‘respect the units

they work with’’ (p. 1001). In the ideal case where the raw units of measurement

have a natural interpretation and are consistent across multiple studies, it is not

necessary to standardize the effect size. Using raw units eliminates the depen-

dency of the effect size on the population variance. CIs for effect sizes in raw

units are easily obtained and are exact. However, in the social sciences, the mul-

titude of scales and measurement instruments will necessitate the use of standar-

dized effect sizes in the future.
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