Quick Introduction

- born and raised in Germany
- moved to United States when I was 16
- 1998-2004: PhD at the University of Illinois, Urbana-Champaign
- dissertation research on statistical methods for meta-analysis
- at the time, the meta-analytic landscape in R looked like this ...

Wolfgang Viechtbauer
Maastricht University
2019-05-31

Early Developments

- 1993: RevMan released (not R) [1]
- 1997: MetaWin released (also not R) [2]
- 1998: Comprehensive Meta-Analysis released (still no R) [3]
- 1999: rmeta package, but no 'meta-regression' capabilities
- ~2000: wrote function for fitting random/mixed-effects models
- ~2005: put function on my personal website
- ~2005: meta package (still no meta-regression)
- 2006-2009: a few other packages
- 2009: published metafor package
- 2009-2019: lots of new packages (current count: 107)
based on CRAN Task View on Meta-Analysis: https://cran.r-project.org/view=MetaAnalysis

CRAN Task View: Meta-Analysis

CRAN Task View: Meta-Analysis
Maintainer: Michael Dewey
Contact: lists at dewey.myzen.co.uk
Version: 2019-05-06
URL: https://CRAN.R-project.org/view=MetaAnalysis
This task view covers packages which include facilities for meta-analysis of summary statistics from primary studies. The task view does not consider the meta-analysis of individual participant data (IPD) which can be handled by any of the standard linear modelling functions but does include some packages which offer special facilities for IPD.

The standard meta-analysis model is a form of weighted least squares and so any of the wide range of R packages providing weighted least squares would in principle be able to fit the model. The advantage of using a specialised package is that (a) it takes care of the small tweaks necessary (b) it provides a range of ancillary functions for displaying and investigating the model. Where the model is referred to below it is this model which is meant.

Where summary statistics are not available a meta-analysis of significance levels is possible. This is not completely unconnected with the problem of adjustment for multiple comparisons but the packages below which offer this, chiefly in the context of genetic data, also offer additional functionality.

First Releases of Meta-Analysis Packages

Exponential Growth (sort of)

Development of the metafor Package

- first version (0.5-0) released 2009-06-04
- a total of 28 versions released so far
- latest is 2.1-0 released 2019-05-13
- added various illustrative datasets over the years (35 as of now)
- added various outcome measures over the years (60 as of now)
- full changelog:
https://wviechtb.github.io/metafor/news/index.html

Some Milestones

Version	Date	Notes / Changes
0.5-0	2009-06-04	- first version released on CRAN -rma.uni(), rma.mh(), rma.peto()
0.5-4	2009-09-18	- regtest() and ranktest() functions - anova() function
0.5-5	2009-10-08	- cumul () and leave1out () functions
0.5-7	2009-12-06	- permutest() function
1.0-1	2010-02-02	- version 1 released
1.4-0	2010-07-30	- various improvements for JSS paper
	2010-08-05	- JSS paper published
1.5-0	2010-12-16	- started metafor website
		- labbe () function

Some Milestones

Version	Date	Notes / Changes
1.9-8	2015-09-28	- robust () function
		- confint () works for rma.mv objects
1.9-9	2016-09-25	- started using git and GitHub
		- ranef () and gosh () functions
		- permutation-based Cls of model coefficients
2.1-0	2019-05-13	- vif () and reporter () functions
		- cluster-level outlier/influence statistics
		- more parallel processing
		- continuous time autoregressive structures
		- spatial correlation structures
2.2-0	devel	- phylogenetic correlation structures

Some Milestones

Version	Date	Notes / Changes
1.7-0	2013-02-06	- rma.glmm() function
1.9-0	2013-06-21	- hc() function
1.9-1	2013-07-20	- baujat() function
1.9-2	2013-10-07	- rma.mv() and profile() functions
1.9-3	2014-05-05	- models with user-defined weights
		- sparse matrices for rma.mv ()
		- autoregressive structures for rma.mv()
1.9-4	2014-07-30	- generalized Q-statistic estimator of τ^{2}
1.9-6	2015-05-07	- multiple correlated random effects
		- parallel processing for profile()

Lines of Code

Lines of Code vs Game of Thrones Viewers

Package Features: Effect Sizes and Outcome Measures

- measures for 2×2 table data (e.g., RD, RR, OR)
- measures for two-group person-time data (e.g., IRR, IRD)
- raw/standardized mean differences and response ratios
- conversions of 2×2 table data / ORs to SMDs and vice-versa
- raw and Fisher's r-to-z transformed correlation coefficients
- (semi)partial correlations and biserial/tetrachoric correlations
- proportions and transformations thereof
- incidence rates and transformations thereof
- raw/standardized mean change measures
- measures of change in 2×2 table data
- reliability measures (Cronbach's alpha and transformations)
- measures that quantify variability (and group differences thereof)

Package Features: Models and Analysis Approaches

Package Features: Plots and Figures

- fixed-, random-, and mixed-effects (meta-regression) models
- Mantel-Haenszel and Peto's (one-step) method
- generalized linear (mixed-effects) models
- multilevel and multivariate meta-analytic models
- network meta-analysis / mixed treatment comparisons
- phylogenetic meta-analysis
- spatio-temporal meta-analytic models
- models with user-defined weights
- forest plots
- funnel plots
- Baujat plots
- L'Abbé plots
- radial (Galbraith) plots
- GOSH plots
- profile likelihood plots
- normal quantile-quantile plots

Package Features: Publication Bias

- rank correlation test
- Egger's regression test
- trim and fill method
- Henmi and Copas approach
- file drawer analysis

Package Features: Inference Methods

- likelihood ratio and Wald-type tests
- Knapp and Hartung method
- confidence intervals for heterogeneity statistics
- permutation tests / confidence intervals
- (cluster) robust tests and confidence intervals
- cumulative meta-analysis
- best linear unbiased predictions
- model fit / information criteria criteria
- bootstrapping (via boot package)
- multimodel inference (via glmulti and MuMIn packages)
- multiple imputation (via mice package)
- raw, standardized, and studentized residuals
- DFFITS, DFBETAS values, Cook's distances, covariance ratios
- cluster-level outlier/influence statistics
- model weights and hat values
- leave-one-out analyses

https://wviechtb.github.io/metafor/articles/pkgdown/diagram.html

Demo: Random-Effects Model

library (metafor)								
\#\#\# look at BCG dataset dat.bcg								
\#\#	trial	author year	tpos	tneg	cpos	cneg	ablat	alloc
\#\# 1	1	Aronson 1948	4	119	11	128	44	random
\#\# 2	2	Ferguson \& Simes 1949	6	300	29	274	55	random
\#\# 3	3	Rosenthal et al 1960	3	228	11	209	42	random
\#\# 4	4	Hart \& Sutherland 1977	62	13536	248	12619	52	random
\#\# 5	5	Frimodt-Moller et al 1973	33	5036	47	5761	13	alternate
\#\# 6	6	Stein \& Aronson 1953	180	1361	372	1079	44	alternate
\#\# 7	7	Vandiviere et al 1973	8	2537	10	619	19	random
\#\# 8	8	TPT Madras 1980	505	87886	499	87892	13	random
\#\# 9	9	Coetzee \& Berjak 1968	29	7470	45	7232	27	random
\#\# 10	10	Rosenthal et al 1961	17	1699	65	1600	42	systematic
\#\# 11	11	Comstock et al 1974	186	50448	141	27197	18	systematic
\#\# 12	12	Comstock \& Webster 1969	5	2493	3	2338	33	systematic
\#\# 13	13	Comstock et al 1976	27	16886	29	17825	33	systematic

Demo: Random-Effects Model

```
### random-effects model (using log risk ratios and variances as input)
res <- rma(yi, vi, data=dat)
res
## Random-Effects Model ( }\textrm{k}=13\mathrm{ ; tau^2 estimator: REML)
##
## tau^2 (estimated amount of total heterogeneity): 0.3132 (SE = 0.1664)
## tau (square root of estimated tau^2 value): 0.5597
## I~2 (total heterogeneity / total variability): 92.22%
## H^2 (total variability / sampling variability): 12.86
##
## Test for Heterogeneity:
## Q(df = 12) = 152.2330, p-val < .0001
##
## Model Results
##
## estimate se zval pval ci.lb ci.ub
## -0.7145 0.1798
```


Demo: Random-Effects Model

\#\#\# calculate log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) dat

\#\#	trial	author year	yi	i
\#\# 1	1	Aronson 1948	-0.8893	0.3256
\#\# 2	2	Ferguson \& Simes 1949	-1.5854	0.1946
\#\# 3	3	Rosenthal et al 1960	-1.3481	0.4154
\#\# 4	4	Hart \& Sutherland 1977	-1.4416	0.0200
\#\# 5	5	Frimodt-Moller et al 1973	-0.2175	0.0512
\#\# 6	6	Stein \& Aronson 1953	-0.7861	0.0069
\#\# 7	7	Vandiviere et al 1973	-1.6209	0.2230
\#\# 8	8	TPT Madras 1980	0.0120	0.0040
\#\# 9	9	Coetzee \& Berjak 1968	-0.4694	0.0564
\#\# 10	10	Rosenthal et al 1961	-1.3713	0.0730
\#\# 11	11	Comstock et al 1974	-0.3394	0.0124
\#\# 12	12	Comstock \& Webster 1969	0.4459	0.5325
\#\# 13	13	Comstock et al 1976	-0.0173	0.0714

Demo: Random-Effects Model

```
### then do lots more stuff
forest(res)
funnel(res)
influence(res)
plot(influence(res))
leave1out(res)
baujat(res)
ranktest(res)
regtest(res)
trimfill(res)
funnel(trimfill(res))
cumul(res)
forest(cumul(res))
radial(res)
labbe(res)
plot(gosh(res))
# note: the following plots are based on various datasets
```

Demo: Forest Plot
Author(s) and Year
Aronson, 1948
Ferguson \& Simes, 1949
Rosenthal et al, 1960
Hart \& Sutherland, 1977
Frimodt-Moller et al, 1973

Demo: Funnel Plot

Demo: Contour-Enhanced Funnel Plot

Demo: Outlier / Influence Diagnostics

30

Demo: Baujat Plot

Demo: Trim-and-Fill

Demo: Cumulative Meta-Analysis

| Author(s) and Year |
| :--- | :--- | :--- |
| Aronson, 1948 |
| + Ferguson \& Simes, 1949 |
| + Stein \& Aronson, 1953 |
| + Rosenthal et al, 1960 |
| + Rosenthal et al, 1961 |
| + Coetzee \& Berjak, 1968 |
| + Comstock \& Webster, 1969 |

Demo: Radial (Galbraith) Plot

34

Demo: L’Abbé Plot

Demo: GOSH Plot

Demo: Meta-Regression
\#\#\# mixed-effects meta-regression model
res <- rma(yi, vi, mods = ~ ablat + alloc, data=dat)
res

```
## Mixed-Effects Model (k = 13; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.1446 (SE = 0.1124)
## tau (square root of estimated tau^2 value): 0.3803
## I^2 (residual heterogeneity / unaccounted variability): 70.11%
## H^2 (unaccounted variability / sampling variability): 3.35
## R^2 (amount of heterogeneity accounted for): 
##
## Test for Residual Heterogeneity:
## QE(df = 9) = 26.2034, p-val = 0.0019
##
## .
```

res <- rma(yi, vi, mods = ~ ablat + alloc, data=dat)

Demo: Meta-Regression

```
##
## Test of Moderators (coefficients 2:4)
## QM(df = 3) = 11.0605, p-val = 0.0114
##
## Model Results:
##
# estimate se zval pval ci.lb ci.ub
## intrcpt }\begin{array}{lllllll}{0.2932}&{0.4050}&{0.7239}&{0.4691}&{-0.5006}&{1.0870}
## ablat -0.0273 0.0092 -2.9650}00.0030 -0.0453 -0.0092
## allocrandom 
## allocsystematic }\begin{array}{lllllll}{0.0585}&{0.3795}&{0.1540}&{0.8776}&{-0.6854}&{0.8023}
```

Demo: Forest Plot with Subgroups

	Vaccinated		$\mathrm{TB}_{+}^{\text {Control }}{ }_{\text {TB- }}$					
Author(s) and Year	TB+	TB-						Risk Ratio [95\% Cl]
Systematic Allocation								
Comstock et al, 1976	27	16886	29	17825			-	0.98 [0.58, 1.66]
Comstock \& Webster, 1969	5	2493	3	2338				$1.56[0.37,6.53]$
Comstock et al, 1974	186	50448	141	27197			-	$0.71[0.57,0.89]$
Rosenthal et al, 1961	17	1699	65	1600		\square		$0.25[0.15,0.43]$
RE Model for Subgroup $\left(\mathrm{Q}=16.59, \mathrm{df}=3, \mathrm{p}=0.00 ; \mathrm{I}^{2}=86.4 \%\right.$)								$0.65[0.32,1.32]$
Random Allocation								
$\begin{array}{lllll}\text { Coetzee \& Berjak, } 1968 & 29 & 7470 & 45 & 7232\end{array}$								0.63 [0.39, 1.00]
								1.01 [0.89, 1.14]
								0.20 [0.08, 0.50]
$\begin{array}{llllll}\text { Hart \& Sutherland, } 1977 & 62 & 13536 & 248 & 12619\end{array}$								0.24 [0.18, 0.31]
Rosenthal et al, 1960 Ferguson \& Simes. 1949 3								0.26 [0.07, 0.92]
								$0.20[0.09,0.49]$
								$0.41[0.13,1.26]$
RE Model for Subgroup ($\mathrm{Q}=110.21, \mathrm{df}=6, \mathrm{p}=0.00 ; 1^{2}=89.9 \%$)								0.38 [0.22, 0.65]
Alternate Allocation								
Stein \& Aronson, 1953 Frimodt-Moller et al, 1973	180	1361	372	1079				$0.46[0.39,0.54]$
	33	5036	47	5761				0.80 [0.52, 1.25]
RE Model for Subgroup ($\mathrm{Q}=5.56, \mathrm{df}=1, \mathrm{p}=0.02 ; \mathrm{r}^{2}=82.0 \%$)								0.58 [0.34, 1.01]
RE Model for All Studies ($\mathrm{Q}=152.23, \mathrm{df}=12, \mathrm{p}=0.00 ; \mathrm{I}^{2}=92.2 \%$)								0.49 [0.34, 0.70]
					0.05	0.25	1	
						Risk	Ratio	

39

Demo: Meta-Analytic Scatterplot

The reporter () Function

- automatically generates a report based on rma. uni objects
- describes the statistical methods used
- gives a natural language summary of the results
- includes a forest and a funnel plot
- gives references for all methods used
- output can be html, pdf, or docx

To-Do for reporter ()

- make reporter () work with meta-regression models
- other ideas:
- option to suppress/customize forest/funnel plots
- allow transformation of results (e.g., log risk ratio to risk ratio)
- add explanatory footnotes
- more customization (group names, outcome name, ...) - extend to rma.mh, rma.peto, and rma.glmm objects

Quick Demo: Using reporter ()

dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, slab=paste(author, ", ", year, sep=""), data=dat.bcg)
res <- rma(yi, vi, data=dat)
reporter(res)

Directory for generating the report is: /tmp/RtmpfH6xxC
Copying references.bib and apa.csl to report directory ...
Saving model object to report_res.rdata ...
Creating report_res.rmd file ...
Rendering report_res.rmd file ...
Generated /tmp/RtmpfH6xxC/report_res.html ...
Opening report ...

Impact: Downloads

- not possible to track total downloads across all CRAN mirrors
- can get counts for the RStudio CRAN mirror (Oct 2012 - now)
- roughly 244 k downloads in total

Impact: Citations

- Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. Journal of Statistical Software, 36(3), 1-48.
- Citations: WoS Core Collection: 2968 / Google Scholar: 4282

Impact: Tools that makes use of metafor

- CRAN packages: bayesmeta, hetmeta, metaforest, metawho, SAMURAI, catmap, concurve, ConfoundedMeta, eefAnalytics, EValue, fmri, getmstatistic, ggstatsplot, KenSyn, mc.heterogeneity, meta, metagear, metagen, metamedian, metamisc, metaplus, MetaUtility, metaviz, NSM3, psychmeta, PublicationBias, puniform, RcmdrPlugin.MA, Replicate, reproducer, rma.exact, SimTimeVar, SSDforR, xmeta, ...
- OpenMeta \& OpenMEE (Center for Evidence Synthesis in Health)
- metaforGUI
- jamovi + MAJOR and JASP
- metaBUS and MetaLab
- ...

Impact: Disciplines

Support

- documentation, documentation, documentation

Email Support \rightarrow Mailing List

Validation / Testing

- extensive comparisons with other R/software packages
- comparison with published results (e.g., analysis examples)
- testing via simulation studies
- appreciable user base
- automated testing + code coverage ($\sim 70 \%$)

Philosophy

- build a toolbox, not individuals tools
- try to avoid special cases
- coherent and general modeling framework; e.g., rma.mv () for:
- multilevel meta-analysis (e.g., [4], website)
- multivariate meta-analysis (e.g., [5], website)
- network meta-analysis (e.g., example 1, example 2)
- phylogenetic meta-analysis (e.g., [6], [7])
. spatio-temporal models (e.g., [8])
- figure out logical generalizations
- listen to users

The Future

- keep expanding on the capabilities
- add location-scale models to rma.uni ()
- add selection models to rma. uni () (and rma.mv () ?)
- allow fitting rma. uni () models using fully Bayesian methods
- make reporter() work with meta-regression models
-...
- a meta-analysis data package (metadat) - in progress!

The Future

- keep expanding on the capabilities
- add location-scale models to rma.uni ()
- add selection models to rma. uni () (and rma.mv()?)
- allow fitting rma. uni () models using fully Bayesian methods
- make reporter() work with meta-regression models - ...
- a meta-analysis data package (metadat) - in progress! -...

The Future

> - keep expanding on the capabilities

- add location-scale models to rma.uni()
- add selection models to rma. uni () (and rma.mv()?)
- allow fitting rma. uni () models using fully Bayesian methods
- make reporter() work with meta-regression models
- ...
- a meta-analysis data package (metadat) - in progress!
- ...
- rewrite everything from scratch!

References ii

1. Starr, M., Chalmers, I., Clarke, M., \& Oxman, A. D. (2009). The origins, evolution, and future of The Cochrane Database of Systematic Reviews. International Journal of Technology Assessment in Health Care, 25(S1), 182-195.
2. Rosenberg, M. S., Adams, D. C., \& Gurevitch, J. (1997). MetaWin: Statistical software for meta-analysis with resampling tests. Sunderland, MA: Sinauer Associates.
3. Borenstein, M., \& Rothstein, H. (1998). Comprehensive Meta-Analysis: A computer program for research synthesis. Englewood, NJ: Biostat Inc.
4. Konstantopoulos, S. (2011). Fixed effects and variance components estimation in three-level meta-analysis. Research Synthesis Methods, 2(1), 61-76.
5. Berkey, C. S., Hoaglin, D. C., Antczak-Bouckoms, A., Mosteller, F., \& Colditz, G. A. (1998). Meta-analysis of multiple outcomes by regression with random effects. Statistics in Medicine, 17(22), 2537-2550.
6. Nakagawa, S., \& Santos, E. S. A. (2012). Methodological issues and advances in biological meta-analysis. Evolutionary Ecology, 26(5), 1253-1274.
7. Hoeksema, J. D., Bever, J. D., Chakraborty, S., Chaudhary, V. B., Gardes, M., Gehring, C. A., ... Zee, P. C. (2018). Evolutionary history of plant hosts and fungal symbionts predicts the strength of mycorrhizal mutualism. Communications Biology, 1(1), 116.
8. Maire, A., Thierry, E., Viechtbauer, W., \& Daufresne, M. (2019). Poleward shift in large-river fish communities detected with a novel meta-analysis framework. Freshwater Biology, 64(6), 1143-1156.

Thank You!
wolfgang.viechtbauer@maastrichtuniversity.nl
http://www.wvbauer.com/
@wviechtb

