Overview

  • describe the ‘standard workflow’ of a meta-analysis
  • introduce additional complexities that often arise
  • describe a workflow that addresses these issues
  • illustrate analyses using the metafor package for R

 

Standard Workflow

  • define goal(s) of meta-analysis and inclusion/exclusion criteria
  • find relevant studies that have examined phenomenon of interest
  • quantify results in terms of an effect size measure
  • quantify precision of estimates in terms of their variances
  • meta-analyze the estimates (fixed- and/or random-effects model)

  • …
  • profit! (at least get a publication in Nature or Science …)

 

Random-Effects Model

  • let \(y_i\) denote the observed effect size in the \(i\)th study
  • the random-effects model is given by \[y_i = \mu + u_i + e_i\] where \(u_i \sim N(0, \tau^2)\) and \(e_i \sim N(0, v_i)\)
  • note: \(v_i\) is the sampling variance of the \(i\)th estimate

 

Some Examples

 

BCG Vaccine

  • meta-analysis on the effectiveness of the BCG vaccine against tuberculosis (Colditz et al., 1994)
  • study participants were (randomly) assigned to either the treatment (vaccinated) or a control (not vaccinated) group
  • number of TB+/TB- cases in each group recorded during follow-up
  • effect size measure: (log) risk ratio
#  trial               author year tpos  tneg cpos  cneg
#      1              Aronson 1948    4   119   11   128
#      2     Ferguson & Simes 1949    6   300   29   274
#      3      Rosenthal et al 1960    3   228   11   209
#      4    Hart & Sutherland 1977   62 13536  248 12619
#      5 Frimodt-Moller et al 1973   33  5036   47  5761
#      6      Stein & Aronson 1953  180  1361  372  1079
#      7     Vandiviere et al 1973    8  2537   10   619
#      8           TPT Madras 1980  505 87886  499 87892
#      9     Coetzee & Berjak 1968   29  7470   45  7232
#     10      Rosenthal et al 1961   17  1699   65  1600
#     11       Comstock et al 1974  186 50448  141 27197
#     12   Comstock & Webster 1969    5  2493    3  2338
#     13       Comstock et al 1976   27 16886   29 17825
#  trial               author year tpos  tneg cpos  cneg      yi     vi 
#      1              Aronson 1948    4   119   11   128 -0.8893 0.3256 
#      2     Ferguson & Simes 1949    6   300   29   274 -1.5854 0.1946 
#      3      Rosenthal et al 1960    3   228   11   209 -1.3481 0.4154 
#      4    Hart & Sutherland 1977   62 13536  248 12619 -1.4416 0.0200 
#      5 Frimodt-Moller et al 1973   33  5036   47  5761 -0.2175 0.0512 
#      6      Stein & Aronson 1953  180  1361  372  1079 -0.7861 0.0069 
#      7     Vandiviere et al 1973    8  2537   10   619 -1.6209 0.2230 
#      8           TPT Madras 1980  505 87886  499 87892  0.0120 0.0040 
#      9     Coetzee & Berjak 1968   29  7470   45  7232 -0.4694 0.0564 
#     10      Rosenthal et al 1961   17  1699   65  1600 -1.3713 0.0730 
#     11       Comstock et al 1974  186 50448  141 27197 -0.3394 0.0124 
#     12   Comstock & Webster 1969    5  2493    3  2338  0.4459 0.5325 
#     13       Comstock et al 1976   27 16886   29 17825 -0.0173 0.0714
# Random-Effects Model (k = 13; tau^2 estimator: REML)
# 
# tau^2 (estimated amount of total heterogeneity): 0.3132 (SE = 0.1664)
# tau (square root of estimated tau^2 value):      0.5597
# I^2 (total heterogeneity / total variability):   92.22%
# H^2 (total variability / sampling variability):  12.86
# 
# Test for Heterogeneity:
# Q(df = 12) = 152.2330, p-val < .0001
# 
# Model Results:
# 
# estimate      se     zval    pval    ci.lb    ci.ub      
#  -0.7145  0.1798  -3.9744  <.0001  -1.0669  -0.3622  *** 
# 
# ---
# Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#  pred ci.lb ci.ub pi.lb pi.ub 
#  0.49  0.34  0.70  0.15  1.55

 

Writing-to-Learn Interventions

  • meta-analysis examining the effectiveness of school-based writing-to-learn interventions on academic achievement (Bangert-Drowns, Hurley, & Wilkinson, 2004)
  • in each study, a group of students that received instruction with increased emphasis on writing tasks was compared against a group that received conventional instruction with respect to some content-related measure of academic achievement (e.g., final grade, an exam/quiz/test score)
  • effect size measure: standardized mean difference
#   id       author  year   ni      yi     vi  
#    1     Ashworth  1992   60   0.650  0.070  
#    2        Ayers  1993   34  -0.750  0.126  
#    3       Baisch  1990   95  -0.210  0.042  
#    4        Baker  1994  209  -0.040  0.019  
#    5       Bauman  1992  182   0.230  0.022  
#    6       Becker  1996  462   0.030  0.009  
#    7  Bell & Bell  1985   38   0.260  0.106  
#    8      Brodney  1994  542   0.060  0.007  
#    9       Burton  1986   99   0.060  0.040  
#   10    Davis, BH  1990   77   0.120  0.052  
#   11    Davis, JJ  1996   40   0.770  0.107  
#   12          Day  1994  190   0.000  0.021  
#   13      Dipillo  1994  113   0.520  0.037  
#   14      Ganguli  1989   50   0.540  0.083  
#  ... 
#   46       Willey  1988   51   1.460  0.099  
#   47       Willey  1988   46   0.040  0.087  
#   48    Youngberg  1989   56   0.250  0.072
#       yi     vi 
# 1 0.5384 0.0834
# Random-Effects Model (k = 48; tau^2 estimator: REML)
# 
# tau^2 (estimated amount of total heterogeneity): 0.0499 (SE = 0.0197)
# tau (square root of estimated tau^2 value):      0.2235
# I^2 (total heterogeneity / total variability):   58.37%
# H^2 (total variability / sampling variability):  2.40
# 
# Test for Heterogeneity:
# Q(df = 47) = 107.1061, p-val < .0001
# 
# Model Results:
# 
# estimate      se    zval    pval   ci.lb   ci.ub      
#   0.2219  0.0460  4.8209  <.0001  0.1317  0.3122  *** 
# 
# ---
# Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#  pred   se ci.lb ci.ub pi.lb pi.ub 
#  0.22 0.05  0.13  0.31 -0.23  0.67

 

Class Attendance and Class Performance

  • meta-analysis on the relationship between class attendance and class performance (Credé, Roch, & Kieszczynka, 2010)
  • effect size measure: (r-to-z transformed) correlation coefficient
#   studyid  year        source  sampleid   ni       ri 
#         1  2009  dissertation         1   76   0.8860 
#         2  1975       journal         1  297   0.3000 
#         4  1989       journal         1  265   0.4750 
#         4  1989       journal         2  154   0.3340 
#         5  2008       journal         1  162   0.6150 
#         6  1999       journal         1   28   0.1450 
#         6  1999       journal         2   33   0.2300 
#         6  1999       journal         3   47   0.2700 
#         6  1999       journal         4   25  -0.0228 
#         6  1999       journal         5   48   0.4290 
#         6  1999       journal         6   39   0.3490 
#         6  1999       journal         7   41   0.2200 
#         6  1999       journal         8   35   0.3390 
#         6  1999       journal         9   46   0.4470 
#       ... 
#        64  1980       journal         1  121   0.3500 
#        65  2007       journal         1  100   0.2400 
#        68  1986       journal         1  215   0.3090
#   studyid  year        source  sampleid   ni       ri       yi      vi  
#         1  2009  dissertation         1   76   0.8860   1.4030  0.0137  
#         2  1975       journal         1  297   0.3000   0.3095  0.0034  
#         4  1989       journal         1  265   0.4750   0.5165  0.0038  
#         4  1989       journal         2  154   0.3340   0.3473  0.0066  
#         5  2008       journal         1  162   0.6150   0.7169  0.0063  
#         6  1999       journal         1   28   0.1450   0.1460  0.0400  
#         6  1999       journal         2   33   0.2300   0.2342  0.0333  
#         6  1999       journal         3   47   0.2700   0.2769  0.0227  
#         6  1999       journal         4   25  -0.0228  -0.0228  0.0455  
#         6  1999       journal         5   48   0.4290   0.4587  0.0222  
#         6  1999       journal         6   39   0.3490   0.3643  0.0278  
#         6  1999       journal         7   41   0.2200   0.2237  0.0263  
#         6  1999       journal         8   35   0.3390   0.3530  0.0312  
#         6  1999       journal         9   46   0.4470   0.4809  0.0233  
#       ... 
#        64  1980       journal         1  121   0.3500   0.3654  0.0085  
#        65  2007       journal         1  100   0.2400   0.2448  0.0103  
#        68  1986       journal         1  215   0.3090   0.3194  0.0047
# Random-Effects Model (k = 67; tau^2 estimator: REML)
# 
# tau^2 (estimated amount of total heterogeneity): 0.0511 (SE = 0.0104)
# tau (square root of estimated tau^2 value):      0.2261
# I^2 (total heterogeneity / total variability):   93.83%
# H^2 (total variability / sampling variability):  16.21
# 
# Test for Heterogeneity:
# Q(df = 66) = 1068.7213, p-val < .0001
# 
# Model Results:
# 
# estimate      se     zval    pval   ci.lb   ci.ub      
#   0.4547  0.0300  15.1343  <.0001  0.3958  0.5136  *** 
# 
# ---
# Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#  pred ci.lb ci.ub pi.lb pi.ub 
#  0.43  0.38  0.47  0.01  0.72

 

Dependent Estimates

  • in practice, the data structure is often more complex
  • may be able to extract multiple estimates from the same study
  • this can introduce two types of dependencies:
    1. in the sampling errors
    2. in the underlying true effects
  • to account for these, have to:
    1. compute covariances between the sampling errors
    2. use appropriate random effects to capture the dependencies

 

a rough rule: the sampling errors of estimates are dependent when there is at least some overlap in subjects that contribute information to their computation

 

Multilevel Data

  • consider the meta-analysis by Credé et al. (2010) on the relationship between class attendance and class performance
  • 6 studies included multiple samples (e.g., different sections)

     

#   studyid  year        source  sampleid   ni       ri       yi      vi  
#         1  2009  dissertation         1   76   0.8860   1.4030  0.0137  
#         2  1975       journal         1  297   0.3000   0.3095  0.0034  
#         4  1989       journal         1  265   0.4750   0.5165  0.0038  
#         4  1989       journal         2  154   0.3340   0.3473  0.0066  
#         5  2008       journal         1  162   0.6150   0.7169  0.0063  
#         6  1999       journal         1   28   0.1450   0.1460  0.0400  
#         6  1999       journal         2   33   0.2300   0.2342  0.0333  
#         6  1999       journal         3   47   0.2700   0.2769  0.0227  
#         6  1999       journal         4   25  -0.0228  -0.0228  0.0455  
#         6  1999       journal         5   48   0.4290   0.4587  0.0222  
#         6  1999       journal         6   39   0.3490   0.3643  0.0278  
#         6  1999       journal         7   41   0.2200   0.2237  0.0263  
#         6  1999       journal         8   35   0.3390   0.3530  0.0312  
#         6  1999       journal         9   46   0.4470   0.4809  0.0233  
#       ... 
#        64  1980       journal         1  121   0.3500   0.3654  0.0085  
#        65  2007       journal         1  100   0.2400   0.2448  0.0103  
#        68  1986       journal         1  215   0.3090   0.3194  0.0047

 

  • presumably no overlap of subjects across samples within studies
  • hence, by the rule, the sampling errors are uncorrelated
  • but the underlying true correlations may be more similar to each other for different samples within the same study than for samples from different studies

 

Multilevel Model

  • let \(y_{ij}\) denote the \(j\)th observed effect size in the \(i\)th study
  • the multilevel random-effects model is given by \[y_{ij} = \mu + s_i + u_{ij} + e_{ij}\] where \(s_i \sim N(0, \sigma^2_s)\), \(u_{ij} \sim N(0, \sigma^2_u)\), and \(e_{ij} \sim N(0, v_{ij})\)
  • \(\sigma^2_s\) denotes between-study heterogeneity
  • \(\sigma^2_u\) denotes within-study heterogeneity
# Multivariate Meta-Analysis Model (k = 67; method: REML)
# 
# Variance Components:
# 
#             estim    sqrt  nlvls  fixed            factor 
# sigma^2.1  0.0376  0.1939     54     no           studyid 
# sigma^2.2  0.0159  0.1259     67     no  studyid/sampleid 
# 
# Test for Heterogeneity:
# Q(df = 66) = 1068.7213, p-val < .0001
# 
# Model Results:
# 
# estimate      se     zval    pval   ci.lb   ci.ub      
#   0.4798  0.0331  14.5167  <.0001  0.4151  0.5446  *** 
# 
# ---
# Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#  pred ci.lb ci.ub pi.lb pi.ub 
#  0.45  0.39  0.50  0.02  0.73

 

Aggregating Assumes Within-Study Homogeneity

  • a common practice (in the past): aggregate multiple estimates within studies so that a standard RE model can be used
  • implicitly assumes that effects within studies are homogeneous
  • not an assumption we typically want to make!
#   studyid  year        source  sampleid     ni         ri      yi      vi  
#         1  2009  dissertation       1.0   76.0  0.8860000  1.4030  0.0137  
#         2  1975       journal       1.0  297.0  0.3000000  0.3095  0.0034  
#         4  1989       journal       1.5  209.5  0.4045000  0.4547  0.0024  
#         5  2008       journal       1.0  162.0  0.6150000  0.7169  0.0063  
#         6  1999       journal       5.0   38.0  0.2673556  0.3066  0.0032  
#       ... 
#        64  1980       journal       1.0  121.0  0.3500000  0.3654  0.0085  
#        65  2007       journal       1.0  100.0  0.2400000  0.2448  0.0103  
#        68  1986       journal       1.0  215.0  0.3090000  0.3194  0.0047
# Random-Effects Model (k = 54; tau^2 estimator: REML)
# 
# tau^2 (estimated amount of total heterogeneity): 0.0528 (SE = 0.0115)
# tau (square root of estimated tau^2 value):      0.2298
# I^2 (total heterogeneity / total variability):   95.13%
# H^2 (total variability / sampling variability):  20.54
# 
# Test for Heterogeneity:
# Q(df = 53) = 1034.5792, p-val < .0001
# 
# Model Results:
# 
# estimate      se     zval    pval   ci.lb   ci.ub      
#   0.4865  0.0332  14.6416  <.0001  0.4214  0.5517  *** 
# 
# ---
# Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Multivariate Meta-Analysis Model (k = 67; method: REML)
# 
# Variance Components:
# 
#             estim    sqrt  nlvls  fixed   factor 
# sigma^2    0.0528  0.2298     54     no  studyid 
# 
# Test for Heterogeneity:
# Q(df = 66) = 1068.7213, p-val < .0001
# 
# Model Results:
# 
# estimate      se     zval    pval   ci.lb   ci.ub      
#   0.4865  0.0332  14.6416  <.0001  0.4214  0.5517  *** 
# 
# ---
# Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 

Multivariate Data

  • now consider the case where some estimates are computed based on the same sample of subjects
  • multiple scales (e.g., BDI and HDRS) may have been used to measure some construct of interest (depression) within a study
  • can compute an effect size estimate for each scale
  • might also be interested in multiple types of constructs or response variables (e.g., depression and anxiety) and some studies might have measured both

 

Multivariate Model

  • let \(y_{ij}\) denote the \(j\)th observed effect size in the \(i\)th study
  • assume \(j\) denotes different types of constructs / outcomes
  • the multivariate random-effects model is given by \[y_{ij} = \mu_j + u_{ij} + e_{ij}\] where \(\left[ \begin{array}{c} u_{i1} \\ u_{i2} \\ \vdots \end{array} \right] \sim N\left( \left[ \begin{array}{c} 0 \\ 0 \\ \vdots \end{array} \right], \left[ \begin{array}{ccc} \tau_1^2 & \rho_{12}\tau_1\tau_2 & \ldots \\ \rho_{12}\tau_1\tau_2 & \tau_2^2 & \ldots \\ \vdots & \vdots & \ddots \end{array} \right] \right)\) and \(\left[ \begin{array}{c} e_{i1} \\ e_{i2} \\ \vdots \end{array} \right] \sim N\left( \left[ \begin{array}{c} 0 \\ 0 \\ \vdots \end{array} \right], \left[ \begin{array}{ccc} v_{i1} & cov_{i12} & \ldots \\ cov_{i12} & v_{i2} & \ldots \\ \vdots & \vdots & \ddots \end{array} \right] \right)\)

 

Surgical Treatment for Periodontal Disease

  • meta-analysis on the effectiveness of a surgical versus a non-surgical procedure for the treatment of periodontal disease (Berkey, Hoaglin, Antczak-Bouckoms, Mosteller, & Colditz, 1998)
  • each of the 5 included studies measures two types of outcomes in the same subjects: ‘probing depth’ and ‘attachment level’
  • effect size measure: raw mean difference
#    trial           author year ni outcome      yi     vi    v1i    v2i 
# 1      1 Pihlstrom et al. 1983 14      PD  0.4700 0.0075 0.0075 0.0030 
# 2      1 Pihlstrom et al. 1983 14      AL -0.3200 0.0077 0.0030 0.0077 
# 3      2    Lindhe et al. 1982 15      PD  0.2000 0.0057 0.0057 0.0009 
# 4      2    Lindhe et al. 1982 15      AL -0.6000 0.0008 0.0009 0.0008 
# 5      3   Knowles et al. 1979 78      PD  0.4000 0.0021 0.0021 0.0007 
# 6      3   Knowles et al. 1979 78      AL -0.1200 0.0014 0.0007 0.0014 
# 7      4  Ramfjord et al. 1987 89      PD  0.2600 0.0029 0.0029 0.0009 
# 8      4  Ramfjord et al. 1987 89      AL -0.3100 0.0015 0.0009 0.0015 
# 9      5    Becker et al. 1988 16      PD  0.5600 0.0148 0.0148 0.0072 
# 10     5    Becker et al. 1988 16      AL -0.3900 0.0304 0.0072 0.0304

 

  • also have the var-cov matrix of the sampling errors for each study
#       [,1]   [,2]   [,3]   [,4]   [,5]   [,6]   [,7]   [,8]   [,9]   [,10] 
#  [1,] 0.0075 0.0030 .      .      .      .      .      .      .      .     
#  [2,] 0.0030 0.0077 .      .      .      .      .      .      .      .     
#  [3,] .      .      0.0057 0.0009 .      .      .      .      .      .     
#  [4,] .      .      0.0009 0.0008 .      .      .      .      .      .     
#  [5,] .      .      .      .      0.0021 0.0007 .      .      .      .     
#  [6,] .      .      .      .      0.0007 0.0014 .      .      .      .     
#  [7,] .      .      .      .      .      .      0.0029 0.0009 .      .     
#  [8,] .      .      .      .      .      .      0.0009 0.0015 .      .     
#  [9,] .      .      .      .      .      .      .      .      0.0148 0.0072
# [10,] .      .      .      .      .      .      .      .      0.0072 0.0304
# Multivariate Meta-Analysis Model (k = 10; method: REML)
# 
# Variance Components:
# 
# outer factor: trial   (nlvls = 5)
# inner factor: outcome (nlvls = 2)
# 
#             estim    sqrt  k.lvl  fixed  level 
# tau^2.1    0.0327  0.1807      5     no     AL 
# tau^2.2    0.0117  0.1083      5     no     PD 
# 
#     rho.AL  rho.PD    AL  PD 
# AL       1             -   5 
# PD  0.6088       1    no   - 
# 
# Test for Residual Heterogeneity:
# QE(df = 8) = 128.2267, p-val < .0001
# 
# Test of Moderators (coefficients 1:2):
# QM(df = 2) = 108.8607, p-val < .0001
# 
# Model Results:
# 
#            estimate      se     zval    pval    ci.lb    ci.ub      
# outcomeAL   -0.3392  0.0879  -3.8589  0.0001  -0.5115  -0.1669  *** 
# outcomePD    0.3534  0.0588   6.0057  <.0001   0.2381   0.4688  *** 
# 
# ---
# Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Hypothesis:                             
# 1: outcomeAL - outcomePD = 0 
# 
# Results:
#    estimate     se    zval   pval 
# 1:  -0.6926 0.0744 -9.3120 <.0001 
# 
# Test of Hypothesis:
# QM(df = 1) = 86.7134, p-val < .0001

 

  • sidenote: it is just a peculiar coincidence that all studies measured both outcomes, but this is not a requirement

 

Longitudinal Data

  • studies may have assessed some outcome at multiple timepoints
  • effects sizes calculated for the same subjects at different timepoints are again dependent
  • consider autoregressive structures to account for dependence

 

Deep-Brain Stimulation for Parkinson’s Disease

  • meta-analysis examining the effects of deep-brain stimulation on motor skills of patients with Parkinson’s disease (Ishak, Platt, Joseph, Hanley, & Caro, 2007)
  • included 46 studies that measured the effect at 3, 6, and 12 months after implantation of the stimulator, with some studies also including a further long-term follow-up
  • effect size measure: raw mean difference
#                study  mdur  mbase  time     yi     vi  
#       Alegret (2001)  16.1   53.6     1  -33.4   14.3  
#    Barichella (2003)  13.5   45.3     1  -20.0    7.3  
#    Barichella (2003)  13.5   45.3     3  -30.0    5.7  
#        Berney (2002)  13.6   45.6     1  -21.1    7.3  
#      Burchiel (1999)  13.6   48.0     1  -20.0    8.0  
#      Burchiel (1999)  13.6   48.0     2  -20.0    8.0  
#      Burchiel (1999)  13.6   48.0     3  -18.0    5.0  
#          Chen (2003)  12.1   65.7     2  -32.9  125.0  
#                  ... 
#   Vingerhoets (2002)  16.0   48.8     1  -19.7   18.5  
#   Vingerhoets (2002)  16.0   48.8     2  -22.1   18.1  
#   Vingerhoets (2002)  16.0   48.8     3  -24.3   18.2  
#   Vingerhoets (2002)  16.0   48.8     4  -21.9   16.7  
#       Volkman (2001)  13.1   56.4     2  -37.8   20.9  
#       Volkman (2001)  13.1   56.4     3  -34.0   26.4  
#   Weselburger (2002)  14.0   50.3     1  -22.1   40.8
#      [,1]   [,2]  [,3]  [,4]  [,5]  [,6]  [,7]  [,8]   
# [1,] 14.300 .     .     .     .     .     .     .      
# [2,] .      7.300 4.128 .     .     .     .     .      
# [3,] .      4.128 5.700 .     .     .     .     .      
# [4,] .      .     .     7.300 .     .     .     .      
# [5,] .      .     .     .     8.000 6.400 4.048 .      
# [6,] .      .     .     .     6.400 8.000 5.060 .      
# [7,] .      .     .     .     4.048 5.060 5.000 .      
# [8,] .      .     .     .     .     .     .     125.000
#      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
# [1,] 1.00 .    .    .    .    .    .    .   
# [2,] .    1.00 0.64 .    .    .    .    .   
# [3,] .    0.64 1.00 .    .    .    .    .   
# [4,] .    .    .    1.00 .    .    .    .   
# [5,] .    .    .    .    1.00 0.80 0.64 .   
# [6,] .    .    .    .    0.80 1.00 0.80 .   
# [7,] .    .    .    .    0.64 0.80 1.00 .   
# [8,] .    .    .    .    .    .    .    1.00
# Multivariate Meta-Analysis Model (k = 82; method: REML)
# 
# Variance Components:
# 
# outer factor: study (nlvls = 46)
# inner factor: time  (nlvls = 4)
# 
#            estim  sqrt  k.lvl  fixed  level 
# tau^2.1    21.64  4.65     24     no      1 
# tau^2.2    33.80  5.81     22     no      2 
# tau^2.3    26.31  5.13     25     no      3 
# tau^2.4    30.69  5.54     11     no      4 
# rho         0.92                  no        
# 
# Test for Residual Heterogeneity:
# QE(df = 78) = 287.97, p-val < .01
# 
# Test of Moderators (coefficients 1:4):
# QM(df = 4) = 889.57, p-val < .01
# 
# Model Results:
# 
#                estimate    se    zval  pval   ci.lb   ci.ub      
# factor(time)1    -25.84  1.01  -25.70  <.01  -27.81  -23.87  *** 
# factor(time)2    -27.32  1.15  -23.66  <.01  -29.58  -25.06  *** 
# factor(time)3    -28.70  1.04  -27.53  <.01  -30.74  -26.66  *** 
# factor(time)4    -26.27  1.44  -18.24  <.01  -29.09  -23.45  *** 
# 
# ---
# Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 

Constructing the V Matrix

  • the tricky part is constructing the V matrix
  • we have equations for computing the covariances for various effect size measures and circumstances (e.g., Gleser & Olkin, 2009; Lajeunesse, 2011; Olkin & Finn, 1990; Steiger, 1980; Wei & Higgins, 2013)
  • two problems:
    1. implementing these equations is tricky
    2. information needed to compute them is often not available

 

Recidivism and Mental Health

  • meta-analysis on the difference in recidivism in delinquent juveniles with or without a mental health disorder (Assink et al., 2015; Assink & Wibbelink, 2016)
  • dataset includes 17 studies and 100 effect size estimates
  • effect size measure: standardized mean difference
#   study  esid   id       yi      vi  pubstatus  year  deltype 
#       1     1    1   0.9066  0.0740          1   4.5  general 
#       1     2    2   0.4295  0.0398          1   4.5  general 
#       1     3    3   0.2679  0.0481          1   4.5  general 
#       1     4    4   0.2078  0.0239          1   4.5  general 
#       1     5    5   0.0526  0.0331          1   4.5  general 
#       1     6    6  -0.0507  0.0886          1   4.5  general 
#       2     1    7   0.5117  0.0115          1   1.5  general 
#       2     2    8   0.4738  0.0076          1   1.5  general 
#       2     3    9   0.3544  0.0065          1   1.5  general 
#     ... 
#      16     1   79   0.7156  0.0914          1   2.5    overt 
#      16     2   80   0.7067  0.0875          1   2.5   covert 
#      16     3   81   0.6475  0.0330          1   2.5  general 
#      16     4   82   0.6428  0.0861          1   2.5   covert 
#      16     5   83   0.6271  0.0400          1   2.5  general 
#      16     6   84   0.6238  0.0680          1   2.5  general 
#      16     7   85   0.6025  0.1287          1   2.5    overt 
#      16     8   86   0.5763  0.0332          1   2.5  general 
#      16     9   87   0.5171  0.0517          1   2.5   covert 
#      16    10   88  -0.3797  0.0390          1   2.5   covert 
#      16    11   89  -0.4228  0.0664          1   2.5   covert 
#      16    12   90  -0.4245  0.0809          1   2.5   covert 
#      16    13   91  -0.4671  0.0667          1   2.5   covert 
#      16    14   92  -0.5230  0.0988          1   2.5    overt 
#      16    15   93  -0.5675  0.0340          1   2.5   covert 
#      16    16   94  -0.7586  0.0437          1   2.5   covert 
#      17     1   95   0.3453  0.0340          1   5.5  general 
#      17     2   96   0.1221  0.0158          1   5.5  general 
#      17     3   97   0.0906  0.0107          1   5.5  general 
#      17     4   98   0.0040  0.0208          1   5.5  general 
#      17     5   99  -0.0207  0.0123          1   5.5  general 
#      17     6  100  -0.0660  0.0100          1   5.5  general
#       [,1]   [,2]   [,3]   [,4]   [,5]   [,6]   [,7]   [,8]   [,9]  
#  [1,] 0.0740 0.0326 0.0358 0.0252 0.0297 0.0486 .      .      .     
#  [2,] 0.0326 0.0398 0.0263 0.0185 0.0218 0.0356 .      .      .     
#  [3,] 0.0358 0.0263 0.0481 0.0203 0.0239 0.0392 .      .      .     
#  [4,] 0.0252 0.0185 0.0203 0.0239 0.0169 0.0276 .      .      .     
#  [5,] 0.0297 0.0218 0.0239 0.0169 0.0331 0.0325 .      .      .     
#  [6,] 0.0486 0.0356 0.0392 0.0276 0.0325 0.0886 .      .      .     
#  [7,] .      .      .      .      .      .      0.0115 0.0056 0.0052
#  [8,] .      .      .      .      .      .      0.0056 0.0076 0.0042
#  [9,] .      .      .      .      .      .      0.0052 0.0042 0.0065
#      [,1] [,2] [,3] [,4] [,5] [,6] [,7]
# [1,] 1.00 0.50 0.50 0.50 0.50 0.50 .   
# [2,] 0.50 1.00 0.50 0.70 0.50 0.50 .   
# [3,] 0.50 0.50 1.00 0.50 0.70 0.70 .   
# [4,] 0.50 0.70 0.50 1.00 0.50 0.50 .   
# [5,] 0.50 0.50 0.70 0.50 1.00 0.70 .   
# [6,] 0.50 0.50 0.70 0.50 0.70 1.00 .   
# [7,] .    .    .    .    .    .    .
# Multivariate Meta-Analysis Model (k = 100; method: REML)
# 
# Variance Components:
# 
#             estim    sqrt  nlvls  fixed              factor 
# sigma^2.1  0.0747  0.2734     17     no               study 
# sigma^2.2  0.0000  0.0000     21     no       study/deltype 
# sigma^2.3  0.1387  0.3724    100     no  study/deltype/esid 
# 
# Test for Residual Heterogeneity:
# QE(df = 97) = 783.0157, p-val < .0001
# 
# Test of Moderators (coefficients 2:3):
# QM(df = 2) = 8.8461, p-val = 0.0120
# 
# Model Results:
# 
#                estimate      se     zval    pval    ci.lb    ci.ub      
# intrcpt          0.4029  0.0960   4.1984  <.0001   0.2148   0.5909  *** 
# deltypecovert   -0.6948  0.2343  -2.9652  0.0030  -1.1541  -0.2355   ** 
# deltypeovert    -0.1569  0.1679  -0.9343  0.3501  -0.4859   0.1722      
# 
# ---
# Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 

Cluster-Robust Inference

  • but the results assume we got \(V\) correct, when in fact we just cobbled together a rough approximation
  • consider the model we have fitted a ‘working model’
  • even if we got \(V\) wrong, estimates of the fixed effects should still be approximately unbiased (but not fully efficient)
  • however the standard errors might be off
  • compute cluster-robust standard errors based on the working model for making inferences (Hedges, Tipton, & Johnson, 2010)
  • can do this with the robumeta package (Tanner-Smith, Tipton, & Polanin, 2016), metafor::robust() or, even better, use the clubSandwich package (Pustejovsky & Tipton, 2018; Tipton, 2015; Tipton & Pustejovsky, 2015) directly with metafor objects (Pustejovsky & Tipton, 2021)
# Multivariate Meta-Analysis Model (k = 100; method: REML)
# 
# Variance Components:
# 
#             estim    sqrt  nlvls  fixed              factor 
# sigma^2.1  0.0747  0.2734     17     no               study 
# sigma^2.2  0.0000  0.0000     21     no       study/deltype 
# sigma^2.3  0.1387  0.3724    100     no  study/deltype/esid 
# 
# Test for Residual Heterogeneity:
# QE(df = 97) = 783.0157, p-val < .0001
# 
# Number of estimates:   100
# Number of clusters:    17
# Estimates per cluster: 1-22 (mean: 5.88, median: 5)
# 
# Test of Moderators (coefficients 2:3):¹
# F(df1 = 2, df2 = 14) = 423.4635, p-val < .0001
# 
# Model Results:
# 
#                estimate      se¹      tval¹  df¹    pval¹    ci.lb¹    ci.ub¹      
# intrcpt          0.4029  0.1022     3.9407   14   0.0015    0.1836    0.6221    ** 
# deltypecovert   -0.6948  0.0368   -18.8757   14   <.0001   -0.7738   -0.6159   *** 
# deltypeovert    -0.1569  0.0674    -2.3282   14   0.0354   -0.3013   -0.0124     * 
# 
# ---
# Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# 
# 1) results based on cluster-robust inference (var-cov estimator: CR1,
#    approx t/F-tests and confidence intervals, df: residual method)
#          Coef. Estimate     SE t-stat d.f. (Satt) p-val (Satt) Sig.
#        intrcpt    0.403 0.0961   4.19       14.56       <0.001  ***
#  deltypecovert   -0.695 0.0899  -7.73        1.91       0.0185    *
#   deltypeovert   -0.157 0.0684  -2.29        1.94       0.1526

 

General Workflow

  • define goal(s) of meta-analysis and inclusion/exclusion criteria
  • find relevant studies that have examined phenomenon of interest
  • quantify results in terms of an effect size measure
  • quantify precision of estimates in terms of their variances
  • construct the (approximate) \(V\) matrix by considering which estimates are based on the same or at least partially overlapping groups of subjects
  • fit an appropriate multilevel/multivariate model that captures the dependencies in the underlying true effects
  • to the extend that \(V\) is just an approximation, consider the model a ‘working model’ and use cluster-robust variance estimation for making inferences about the fixed effects

 

References

Assink, M., Put, C. E. van der, Hoeve, M., Vries, S. L. A. de, Stams, G. J. J. M., & Oort, F. J. (2015). Risk factors for persistent delinquent behavior among juveniles: A meta-analytic review. Clinical Psychology Review, 42, 47–61. https://doi.org/10.1016/j.cpr.2015.08.002

Assink, M., & Wibbelink, C. J. M. (2016). Fitting three-level meta-analytic models in R: A step-by-step tutorial. The Quantitative Methods for Psychology, 12(3), 154–174. https://doi.org/10.20982/tqmp.12.3.p154

Bangert-Drowns, R. L., Hurley, M. M., & Wilkinson, B. (2004). The effects of school-based writing-to-learn interventions on academic achievement: A meta-analysis. Review of Educational Research, 74(1), 29–58. https://doi.org/10.3102/00346543074001029

Berkey, C. S., Hoaglin, D. C., Antczak-Bouckoms, A., Mosteller, F., & Colditz, G. A. (1998). Meta-analysis of multiple outcomes by regression with random effects. Statistics in Medicine, 17(22), 2537–2550. https://doi.org/10.1002/(sici)1097-0258(19981130)17:22<2537::aid-sim953>3.0.co;2-c

Colditz, G. A., Brewer, T. F., Berkey, C. S., Wilson, M. E., Burdick, E., Fineberg, H. V., & Mosteller, F. (1994). Efficacy of BCG vaccine in the prevention of tuberculosis: Meta-analysis of the published literature. Journal of the American Medical Association, 271(9), 698–702. https://doi.org/10.1001/jama.1994.03510330076038

Credé, M., Roch, S. G., & Kieszczynka, U. M. (2010). Class attendance in college: A meta-analytic review of the relationship of class attendance with grades and student characteristics. Review of Educational Research, 80(2), 272–295. https://doi.org/10.3102/0034654310362998

Gleser, L. J., & Olkin, I. (2009). Stochastically dependent effect sizes. In H. Cooper, L. V. Hedges, & J. C. Valentine (Eds.), The handbook of research synthesis and meta-analysis (2nd ed., pp. 357–376). New York: Russell Sage Foundation.

Hasselblad, V. (1998). Meta-analysis of multitreatment studies. Medical Decision Making, 18(1), 37–43. https://doi.org/10.1177/0272989X9801800110

Hedges, L. V., Tipton, E., & Johnson, M. C. (2010). Robust variance estimation in meta-regression with dependent effect size estimates. Research Synthesis Methods, 1(1), 39–65. https://doi.org/10.1002/jrsm.5

Ishak, K. J., Platt, R. W., Joseph, L., Hanley, J. A., & Caro, J. J. (2007). Meta-analysis of longitudinal studies. Clinical Trials, 4(5), 525–539. https://doi.org/10.1177/1740774507083567

Kearon, C., Julian, J. A., Math, M., Newman, T. E., & Ginsberg, J. S. (1998). Noninvasive diagnosis of deep venous thrombosis. Annals of Internal Medicine, 128(8), 663–677. https://doi.org/10.7326/0003-4819-128-8-199804150-00011

Lajeunesse, M. J. (2011). On the meta-analysis of response ratios for studies with correlated and multi-group designs. Ecology, 92(11), 2049–2055. https://doi.org/10.1890/11-0423.1

Olkin, I., & Finn, J. D. (1990). Testing correlated correlations. Psychological Bulletin, 108(2), 330–333. https://doi.org/10.1037/0033-2909.108.2.330

Pustejovsky, J. E., & Tipton, E. (2018). Small-sample methods for cluster-robust variance estimation and hypothesis testing in fixed effects models. Journal of Business & Economic Statistics, 36(4), 672–683. https://doi.org/10.1080/07350015.2016.1247004

Pustejovsky, J. E., & Tipton, E. (2021). Meta-analysis with robust variance estimation: Expanding the range of working models. Prevention Science. https://doi.org/10.1007/s11121-021-01246-3

Steiger, J. H. (1980). Tests for comparing elements of a correlation matrix. Psychological Bulletin, 87(2), 245–251. https://doi.org/10.1037/0033-2909.87.2.245

Tanner-Smith, E. E., Tipton, E., & Polanin, J. R. (2016). Handling complex meta-analytic data structures using robust variance estimates: A tutorial in R. Journal of Developmental and Life-Course Criminology, 2(1), 85–112. https://doi.org/10.1007/s40865-016-0026-5

Tipton, E. (2015). Small sample adjustments for robust variance estimation with meta-regression. Psychological Methods, 20(3), 375–393. https://doi.org/10.1037/met0000011

Tipton, E., & Pustejovsky, J. E. (2015). Small-sample adjustments for tests of moderators and model fit using robust variance estimation in meta-regression. Journal of Educational and Behavioral Statistics, 40(6), 604–634. https://doi.org/10.3102/1076998615606099

Wei, Y., & Higgins, J. P. (2013). Estimating within-study covariances in multivariate meta-analysis with multiple outcomes. Statistics in Medicine, 32(7), 1191–1205. https://doi.org/10.1002/sim.5679

 

Appendix

  • as I probably won’t have enough time for this (and probably not even enough time to get through everything above), I will add some additional examples here

Network Meta-Analysis (NMA)

  • is essentially just a special case of the multivariate model
  • a common occurrence in NMA: studies with more than two groups, allowing the computation of multiple contrasts (e.g., treatment A vs control and treatment B vs control)
  • reuse of information from the shared group induces correlation among the effect sizes
  • note: here there is only partial overlap of subjects that contribute information to both effect sizes, but the rule still applies

Effectiveness of Counseling for Smoking Cessation

  • network meta-analysis on the effectiveness of various counseling types for smoking cessation (Hasselblad, 1998)
  • 24 studies that examined 4 different treatments (self-help, individual counseling, group counseling, and no contact)